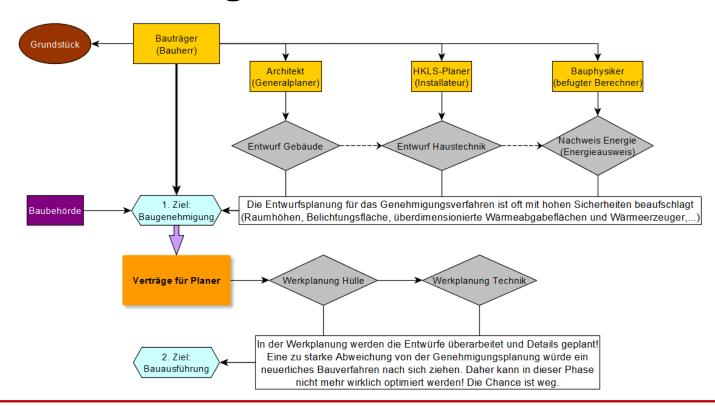
Vergleich von Aufwand und Nutzen verschiedener Bewertungsverfahren für hocheffiziente Gebäude

OIB RL 6 – PHPP – IDA ICE

10. EQUA Fachtag Gebäudesimulation Salzburg, 30.10.2015

Inhalt

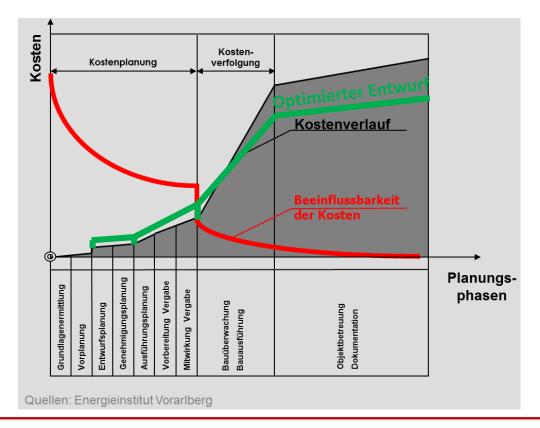
- Wann ist ein Gebäude "hocheffizient"?
- Planung im Wohnbau heute und wie verbessern?
- Überblick der grundsätzlichen Unterschiede
- Zeit- und Kostenaufwände im Vergleich
- Verwertbarkeit und Aussagekraft der Ergebnisse
- Zusammenfassung



Wann ist ein Gebäude hocheffizient?

- Niedriger Bedarf + Energieerzeugung aus Erneuerbaren am Standort
 - = geringer Primärenergiebedarf und CO₂-Emissionen
- Hoher Komfort bei geringstmöglichem Energieeinsatz
- Projektierte Energiebedarfswerte müssen erreicht werden
- Wirtschaftliche Errichtung und Betrieb
- Versorgungs- und Krisensicher
- Bedarf einer hohen Planungs- und Umsetzungsqualität in einem integralen Prozess mit validierten Tools und gut geschulten Planern und Handwerkern!

Planung im Wohnbau heute



Wie Planung heute verbessern?

- Optimierung bereits im frühen Entwurf mit Planungsinstrumenten (zB PHPP oder Simulation)
- Klare Unterscheidung zwischen "Planung/Optimierung" und "Nachweis"
- Aufgabe der Politik
 - Andere Instrumente als Nachweis zulassen
 - Genauere energetische Planung belohnen
 - Anreize für integralen Planungsprozess schaffen
- Bauträger und Planer müssen sich bewusst werden, dass
 - ein ungenaueres Verfahren h\u00f6here Sicherheitsaufschl\u00e4ge enth\u00e4lt und dass sich das negativ auf die Kosten auswirkt (\u00dcberdimensionierung)!
 - der größte Einfluss auf die Gesamtkosten des Gebäudes in der frühen Entwurfsphase besteht!

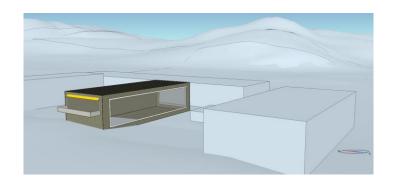
Warum Planung heute verbessern?

Grundsätzliche Unterschiede im Überblick

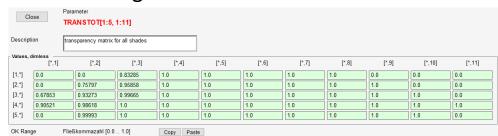
	Nachweisverfahren	PHPP	IDA ICE		
Entwicklung	Richtlinien privater, nationaler Vereine	"Leitfaden Energiebewusste Gebäudeplanung" Hessen (1989), basiert auf SIA	Entwickelt von EQUA Simulation AB in Solna, Schweden		
Allgemeines	Stationär 1 Zone Durchgängige Linearität	Stationär 1 Zone Justiert und validiert mit Sim.	Dynamisch Zonen nach Bedarf Komplexes Gleichungssystem		
Eingabe	Viele Defaultwerte, Minimaler Eingabeaufwand steht im Vordergrund	Kaum Defaultwerte erhöhter Eingabeaufwand Mit designPH Modellierung in SketchUp mit Export in PHPP	Teils höher (Detaillierung), teils geringer (Copy&Paste - zB. Fenster, Balkone, Regelgeschoße)		
Flexibilität	Keine bis minimal	Genug für Wohnbau	Maximal		
RB	Anpassung nur sehr beschränkt	Einfach änderbar Teils speziell für PH	Einfach änderbar + sehr detailliert abbildbar		
Doku	Nicht dokumentiert Nicht validiert	bestens dokumentiert Formularebene + Wizard gut Mehrfach validiert Advanced Level nur bedingt			

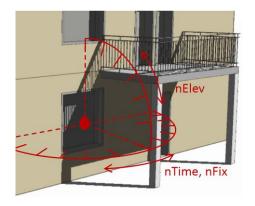
Grundsätzliche Unterschiede im Überblick

	Nachweisverfahren	PHPP	IDA ICE		
Anwendung	 Nachweis der Erfüllung politischer Anforderungen Ungenügend genaue Daten 	 Winter im Fokus Sommer kein Problem Hüllqualität nicht zu schlecht zeitlich + räumlich keine großen Änderungen bzw. Unterschiede in Nutzung 	 Für Entscheidungen, die aus einer Zone nicht ableitbar sind (zB Sommerkomfort für kritische Bereiche, kann Sonnenschutz gespart werden?,) Für alles, wo PHPP oder Nachweis genügen würde 		
Belastbarkeit	 Belastbarkeit uninteressant Vergleichbarkeit in Standardnutzung Grobe systematische Fehler in Österreich Schweiz besser, aber auch nicht belastbar 	 Ø Jahresheizwärmebedarf Heizlast für Passivhäuser Abschätzung Sommer Auslegung Lüftung Solare Deckung inkl. Heizung Fensterlüftung abschätzbar 	 Energiebedarf auch in höherer zeitlicher Auflösung Heizlast, Kühllast Energie in höherer Auflösung Sommerkomfort zonenspezifisch Einzelaussagen zu diversen Gebäude- und Anlagenteilen 		

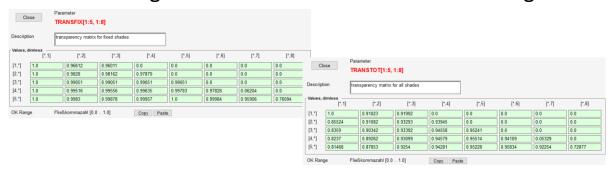


Einige wichtige Unterschiede


- Wärmeverluste gegen Erdreich
 - Nachweis: Abschlagsfaktoren nach Situation
 - PHPP: N\u00e4herungsverfahren Erdreichtemperaturen
 - IDA ICE: ISO 13370 Modell mit Erdreichtemperatur in Abhängigkeit des Klimadatensatzes
- Lüftungswärmeverluste
 - Nachweis: Verringerung der Wärmeverluste durch Lüftungsanlage
 - PHPP: Auslegung von bis zu 10 Lüftungsgeräten auf Nutzeransprüche
 - IDA ICE: Beliebig viele AHUs, auch Wärmeverluste durch einzelne Undichten und Fensteröffnung
- Verschattungsfaktoren
 - Nachweis: Tabellenfaktoren nach Winkel mit linearer Interpolation
 - PHPP: in Abhängigkeit Standort und Sonnenstandswinkel (aus Simulation abgeleitet)
 - IDA ICE: Komplexe Verschattungsmatrix f
 ür bewegliche und fixe Verschattungselemente

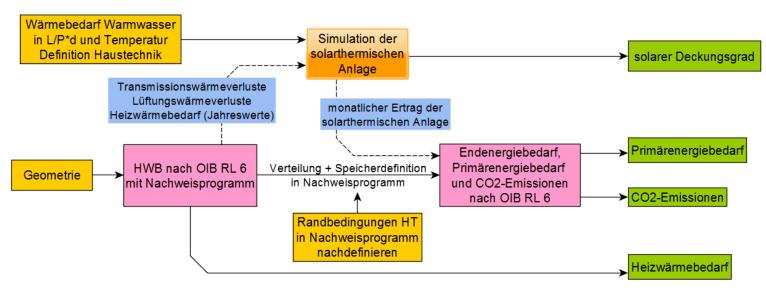


Verschattung in IDA ICE



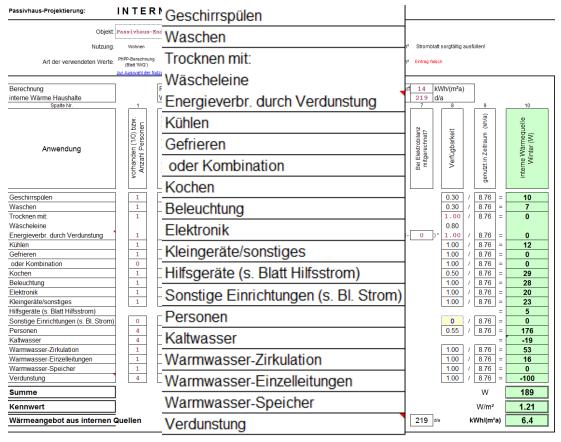
Verschattungsmatrix Südfenster

Verschattungsmatrix Westfenster für Markise und gesamt

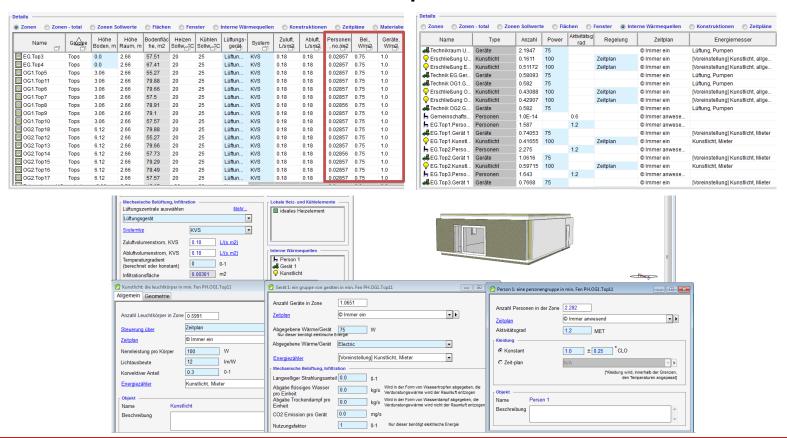


Randbedingungen, Flexibilität, Belastbarkeit

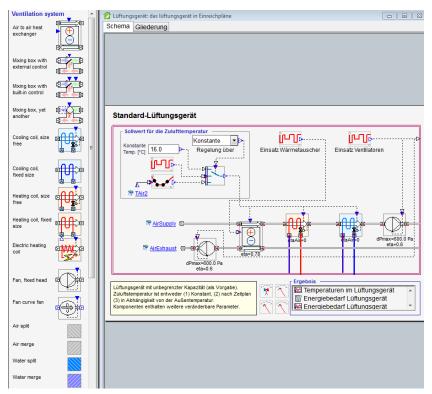
	OIB RL 6	PHPP	IDA ICE		
Randbedingungen	Randbedingungen zwischen WG und verschiedenen Typen von NWG durchgehend beschränkte oder gar keine Anpassung möglich (zB IWQ, WWWB HHSB, Haustechnik)	Standard-Randbedingungen für PH angesetzt, diese sind aber auch projektierbar Klimadaten hinterlegt + eigene Daten aus METEONORM	Vordefinierte Randbedingungen und Modelle vorhanden, keine unveränderlichen Klimadaten aus verschiedenen Quellen, IWQ detailliert abbildbar		
Flexibilität	Berechnung von Varianten sehr aufwändig, nicht sinnvoll! Programmhersteller lassen kaum Freiraum	Berechnung von Varianten einfacher mit Copy&Paste + da Excel auch Varianten mit Makros	Integrierter Variantenrechner Sehr einfach bedienbar Einfache Baumstruktur und Drag&Drop schaffen viel Flexibilität		
Belastbarkeit	Belastbarkeit steht und stand nie im Fokus bei der Entwicklung, "Vergleichbarkeit durch standardisiertes Nutzerverhalten" soll gewährleistet sein.	Ø Jahresheizwärmebedarf Heizlast für Passivhäuser Solare Deckung der Solaranlage inkl. Heizungsbeitrag Fensterlüftung abschätzbar	Energiebedarf auch in höherer zeitlicher Auflösung belastbar Heizlast, Kühllast, Energiebedarf Sommerkomfort zonenspezifisch Einzelaussagen zu diversen Gebäude- und Anlagenteilen		

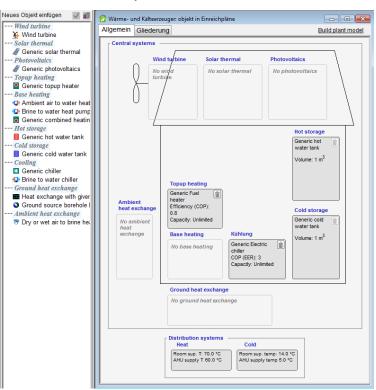

Schnittstellenproblematik am Beispiel Solarthermie

- Nachweis: nur mit Schnittstelle zu anderen Programmen machbar
- PHPP: Solarthermie, Wärmepumpe, WP-Kompaktgeräte ohne Schnittstelle abbildbar, solare Deckung bis 70% validiert mit Polysun
- IDA ICE: keine Schnittstelle, zusätzlich sind die Ergebnisse genauer und die Gleichzeitigkeit zwischen Bedarf und Erzeugung kann dargestellt werden



Projektierung der IWQ in PHPP


Interne Wärmequellen in IDA ICE



Haustechnische Komponenten in IDA ICE

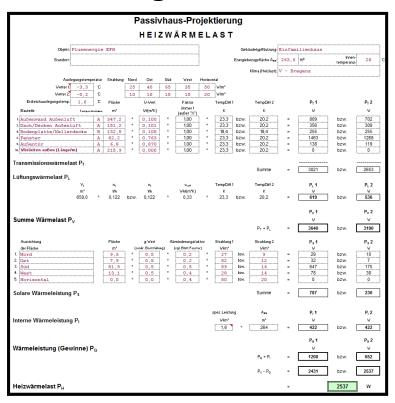
Einfacher und intuitiver Aufbau der Haustechnikkomponenten

Vergleich der Zeit- und Kostenaufwände

	Programm OIB RL6	PHPP	IDA ICE	
Einarbeitung	4 – 8 h	10 – 15 h	75 – 100 h	
Eingabe EFH	1,5 – 2 h	6 – 8 h	4,5 – 6,5 h	
Eingabe MFH	2 – 3 h	10 – 16 h	5 – 7 h	
10 Varianten	1,5 – 2 h Förderoptimum	3 – 4 h Optimum Ø JHWB	3 – 4 h + 1 – 12 h rechnen	
Kosten einmalig	€ 2000,-	€ 340,	Ab € 2000,	
Kosten jährlich	€ 540,- pro User und Bundesland	Keine	Wartungsvertrag: 30% der Anschaffung	
Sonstiges			Speicherbedarf und Rechenzeit!	

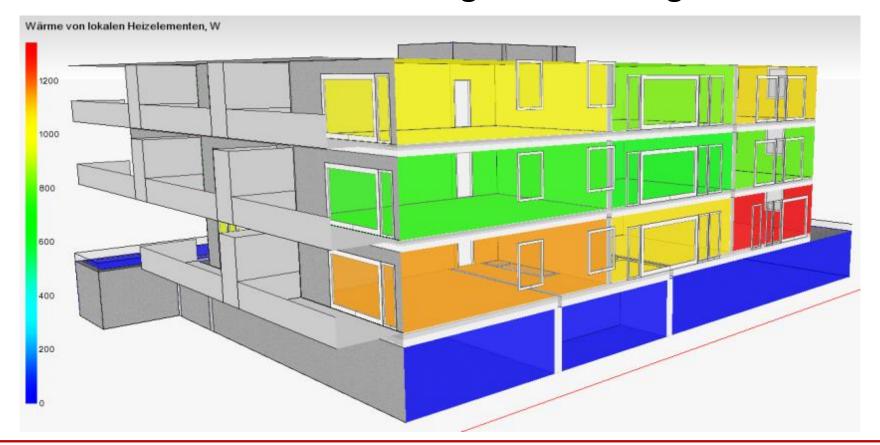
Verwertbarkeit und Aussagekraft der Ergebnisse

Beispiel Heizlast


- In Norm sehr konservativ, hohe Sicherheitsaufschläge, Überdimensionierung der Anlagentechnik vorprogrammiert
- In PHPP für Gebäude mit niedrigem HWB sehr genau, eigens entwickeltes Verfahren aus dynamischen Simulationen, validiert mit Messungen
- In IDA ICE Raumweise Heizlast mit der die Wärmeabgabesysteme ausgelegt werden können
- Die Verwendung eines genaueren Berechnungsverfahrens belohnt den Bauträger mit geringeren Haustechnikkosten
- Die Bedarfsberechnungen sind belastbar! Diese sind ein wichtiger Teil jeder Wirtschaftlichkeitsberechnung!

Verwertbarkeit und Aussagekraft der Ergebnisse

Abschätzung der Gebäude-He Energieausweis-Berechnung Berechnungsblatt Bauherr	izlast auf Basis		er / Baufirm					
Berechnungsblatt		Baumeist	er / Baufirm					
		Baumeist	er / Baufirm					
Bauherr		Baumeist	er / Baufirm	- I D - 1				
				Baumeister / Baufirma / Bauträger / Planer				
0 0		0 0						
		Tel.:						
Norm-Außentemperatur	10 °C	Standort:	Bregenz					
Berechnungs-Raumtemperatur.	20 °C	Brutto-Rauminhalt der						
Temperatur-Differenz:	30 K	beheizten Gebäudeteile:			1.219,29	1.219,29 m³		
		Gebäudehüllfläche:		716,00 m²				
Bauteile		Fläche	Wärmed koeffiz.	Korr faktor		AxUxf		
		Α	U	f	ffh			
		A [m²]	[W/m² K]	[1]	[1]	[W/K]		
AW01 AW mit I-Ebene gedämmt		336,75	0,097	1,00		32,77		
DD01 EG Boden gegen Kriechkeller DS01 Schrägdach 35°		131,08 131,81	0,107 0,101	1,00 1,00		13,98 13,35		
FD01 Dachterrasse			0,101	1.00		2.75		
FF/TÜ Fenster u Türen		89.00	0,713	1,00		63.45		
ZD02 warme Zwischendecke		4.26	0.295			55,.5		
Summe OBEN-Bauteile		159,18	-,					
Summe UNTEN-Bauteile		131,08						
Summe Zwischendecken		4,26						
Summe Außenwandflächen		336,75						
Fensteranteil in Außenwänden	20,9 %	89,00						
Summe				[W/	/K]	126		
Wärmebrücken (detailliert)				[W	/K]	0		
Transmissions - Leitwert L _⊤				[W	/K]	126,30		
Lüftungs - Leitwert L _V				[W/	/K]	32,09		
Gebäude-Heizlast Abschätz	ung L	uftwechsel =	0,12 1/h	[k	W]	4,8		
Flächenbez. Heizlast Absch	ätzung (374 m	²)	[W	m² BG	F]	12,69		


Beispiel Heizlast

4800 Watt vs 2537 Watt

Verwertbarkeit und Aussagekraft der Ergebnisse

Zusammenfassung

- Mehr Zeit und Energie in frühe Entwurfsphase
- Anreize für integralen Planungsprozess schaffen
- Optimierung des Gebäudes mit Planungstools
- Nachweis kann als "Abfallprodukt" mitgeliefert werden
- Nachweisverfahren methodisch zu ungenau für Planung
- Nutzen / Aufwand in PHPP und IDA ICE deutlich besser

Danke für die Aufmerksamkeit!

