EQUA.Fachtag Gebäudesimulation (06.04.2016)

Echte Simulation im praktischen Alltag und ein Ausblick auf morgen

Wie verkaufe ich Simulationsdienstleistungen?

Dipl.-Inf. Peter von der Weide

Andreas Wilke Ingenieurbüro für Bauphysik und Baukonstruktion GmbH

Büro Potsdam

Schlaatzweg 1, 14473 Potsdam Tel: 0331 / 730401-80 Fax: 0331 / 730401-89

Büro Berlin

Joachimstr. 7, 10119 Berlin Tel: 030 / 3744155-70 Fax: 030 / 3744155-99

Büro Hamburg

Steilshooper Str. 300 , 22309 Hamburg Tel: 040 / 639746-45 Fax: 040 / 639746-49

www.wilke-bauphysik.de info@wilke-bauphysik.de

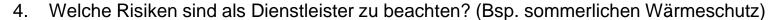
EQUA.Fachtag Gebäudesimulation (06.04.2016)

Echte Simulation im praktischen Alltag und ein Ausblick auf morgen

Wie verkaufe ich Simulationsdienstleistungen?

Bieter als Verkäufer

- Leistungen zum Festpreis
 - 1 (n) Stück Nachweis(e)
 - Ergebnis als Mittel zum Zweck
 - Ergebnis zum Teil nicht baubar!!!
 - Ergebnis erzeugt ggf. Mehraufwand für andere Projektbeteiligte

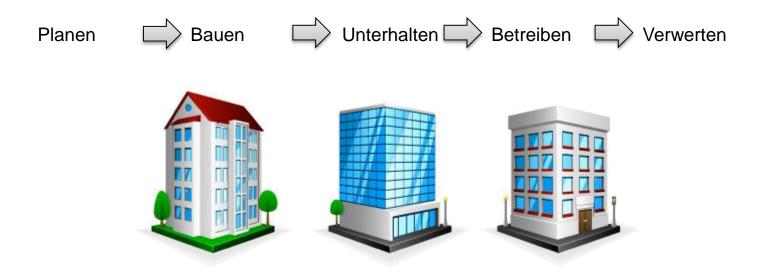


- Leistungsumfang verhandelbar
 - 1 Stück Bedarfsanalyse
 - Nachweise als Bestandteil der Planung
 - Zwischenergebnisse beeinflussen die Planung
 - Ergebnis ist nachhaltig

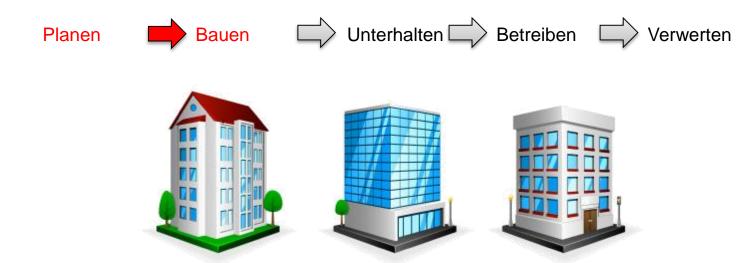
- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung

- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung



- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung


- Beschaffung von Bauleistungen:
 - Modellanalyse zur Errichtung und Finanzierung von Bauwerken

1. Wieso besteht ein unterschiedlicher Bedarf?

- Investorenmodell:
 - AG vergibt Planungs-, Bau- und Finanzierungsleistungen an einen AN. Der AG übernimmt nach Fertigstellung das Gebäude.
 - Vorteil:
 - Kosten- und Terminsicherheit für Bauleistungen
 - Nachteil:
 - Folgekosten werden meist zu gering in der Planung bewertet

Bauunterhaltungsmodell:

 AG vergibt Planungs-, Bau- und Finanzierungsleistungen sowie die Unterhaltung an einen AN für eine Projektlaufzeit (in der Regel 20 – 30 Jahre). Das Gebäude verbleibt beim AG. Die Unterhaltung durch den AN wird in dieser Zeit durch regelmäßige Entgelte durch den AG vergütet.

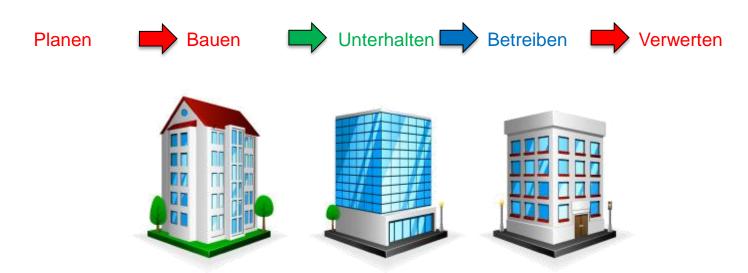
- Vorteil:
 - Kosten- und Terminsicherheit für Bau- und Bauunterhaltungsleistungen
- Nachteil:
 - eingeschränkte Berücksichtigung von Lebenszykluskosten
 - Höherer Aufwand in der Planung

Wieso besteht ein unterschiedlicher Bedarf?

Betreibermodell:

■ AG vergibt Planungs-, Bau- und Finanzierungsleistungen sowie die Unterhaltung als auch den Betrieb an einen AN für eine Projektlaufzeit (in der Regel 20 – 30 Jahre). Die Gesamtkosten einschließlich der Betrieb durch den AN werden in dieser Zeit durch regelmäßige Entgelte durch den AG vergütet.

- Vorteil:
 - Kosten- und Terminsicherheit für Bau- und Betriebsleistungen
 - Berücksichtigung von Lebenszykluskosten
- Nachteil:
 - Höherer Aufwand in der Planung



1. Wieso besteht ein unterschiedlicher Bedarf?

Mietmodell:

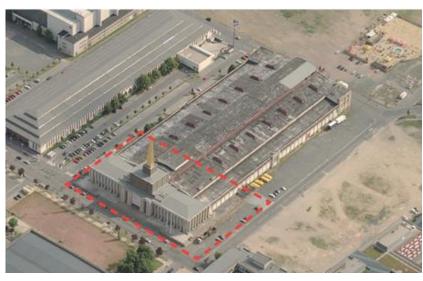
- AG vergibt Planungs-, Bau- und Finanzierungsleistungen sowie die Unterhaltung, den Betrieb und die Verwertung an einen AN. Der ursprüngliche AG tritt nach Fertigstellung des Gebäudes als Mieter auf.
- Vorteil:
 - Kosten- und Terminsicherheit für Bau- und Betriebsleistungen
 - Berücksichtigung von Lebenszykluskosten
 - klare Schnittstellenabgrenzung
- Nachteil:
 - Hoher Aufwand in der Planung

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung

- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

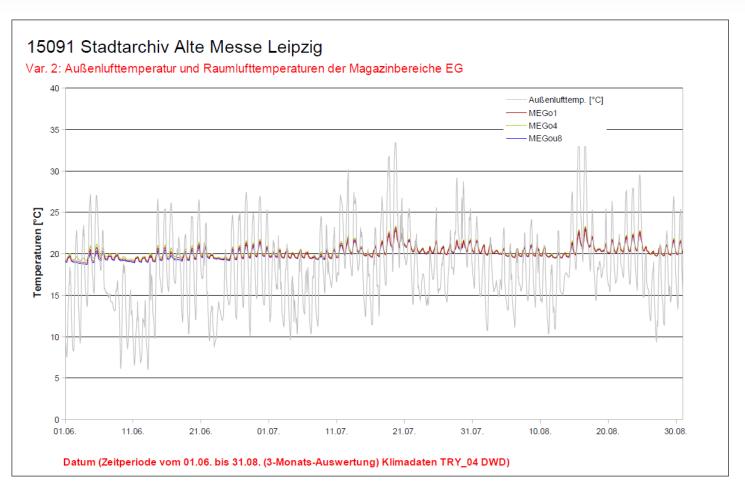
- Gesetze/Vorschriften/Vorgaben (Auszug bzgl. Möglichkeit simulationsbasierter Planung)
 - Wärmeschutz EnEV 2014/2016
 - Forderung aus EnEV 2014/2016 → Nachweis zum sommerlichen Wärmeschutz nach DIN 4108-2
 - Anforderungen an die Tageslichtnutzung → DIN-5034
 - weitere Vorschriften/Vorgaben:
 - Lüftungskonzepte → DIN-1946-6
 - Kühllastberechnungen VDI 2078
 - u. a.

- Wunsch nach durchdachter Planung, dadurch geringe spätere Unterhalts- und Betriebskosten
 - Echte Gebäudesimulation
 - Anlagensimulation
 - Regelungssimulation
 - Tageslichtsimulation
 - weitere Anbindungsmöglichkeiten:
 - Entwicklung von Lüftungsstrategien (CO2, Luftverweildauer)
 - Nicht normativ abgebildete Komponenten können in die Planung einbezogen werden.
 - u. a.



- Randbedingungen aus normativen Vorgaben passen nicht
 - Archiv- und Magazinbauten (Beispiel Stadtarchiv Leipzig)

- Randbedingungen aus normativen Vorgaben passen nicht
 - Archiv- und Magazinbauten (Beispiel Stadtarchiv Leipzig)



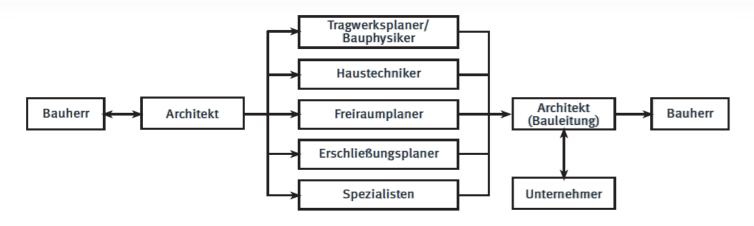
- Randbedingungen aus normativen Vorgaben passen nicht
 - Archiv- und Magazinbauten (Beispiel Stadtarchiv Leipzig)

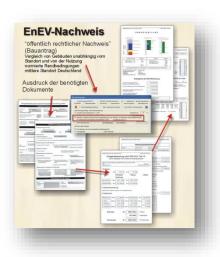
Variant		Raumzone Raumlufttemperatur		relative Raumluftfeuchte					
	(Zeitperiode 01.06. bis 31.08)								
				[°C]		[K]	[%]		
				Min.	Max.	max. Tagesschwankung	Min.	Max.	max. Tagesschwankung
Var.	!								
	Wandaufbau vom Magazin zum Luftraum:	Magazin EG oben	MEGo1	18,9	23,2	2,8	35,9	54,5	11,4
	2cm Speicherplatte zur Feuchteregulierung (z.B. Duripaneel)		MEGo4	19,2	23,4	2,9	35,6	54,3	11,0
	5cm Luftschicht/Unterkonstruktion		MEGou8	18,7	22,9	2,6	36,1	54,6	11,5
	25cm Beton/auch KS-Mauerwerk als thermischer Massivspeicher								
	Wandaufbau vom Luftraum zu angrenzenden Räumen:								
	17,5cm Porenbeton	Magazin EG unten	MEGu9	18,8	23,1	2,8	35,9	54,5	11,4
	Decke-/Dachaufbau		MEGu12	19,2	23,3	2,9	35,7	54,4	11,1
	30cm Wärmedämmung WLS 040		MEGu16	18,8	22,9	2,6	36,0	54,6	11,4
	25cm Beton								
	interne Wärmelast Magazinbereich (07 – 19 Uhr Mo. – Fr.)	Magazin OG oben	MOGo1	19,3	24,3	3,1	35,2	53,7	10,7
	0,0 W/m² keine Geräte, EDV (gelegentlich mobiler PC im Einsatz)		MOGo4	19,4	24,5	3,1	35,1	53,4	10,6
	6,2 W/m² Beleuchtung LED's (15,47 W Al x 0,8 We x 0,5 Gz des Betriebs)		MOGo8	19,3	24,1	3,0	35,2	53,7	10,8
	10 + 1 Person, d. h. ca. 0,07 Person pro 10 m²								
	Lüftung TGA	Magazin OG unten	MOGu9	19,3	24,2	3,0	35,2	53,7	10,8
	Luftwechsel im Magazin bis max. 0,2-fach je Stunde (ggf. Umluft)		MOGu12	19,4	24,4	3,1	35,1	53,4	10,6
	Luftwechsel im Luftraum (mit Außenluft und ggf. Temperierung)		MOGu16	19,3	24,1	3,0	35,2	53,7	10,8
	Steuerung im Magazin (Temperatur und Feuchte)								
	Steuerung im Luftraum (Temperatur)								
		Luftraum	zur Info (Werte gemittelt)	15,1	22,5	2,8	29,7	95,3	43,2

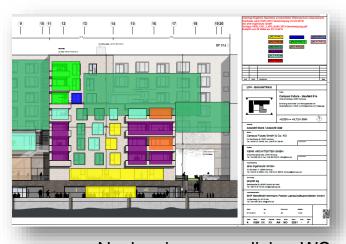
- Randbedingungen aus normativen Vorgaben passen nicht
 - Archiv- und Magazinbauten (Beispiel Stadtarchiv Leipzig)

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen

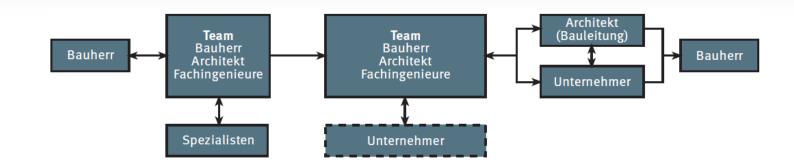
- Lineare Planung
- Integrale Planung

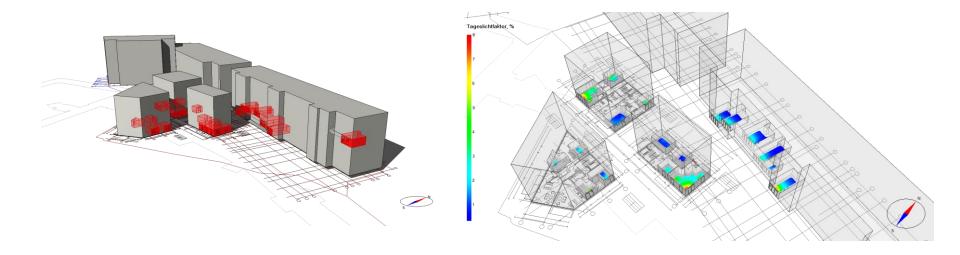



- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

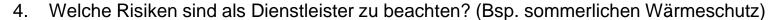


Umsetzung durch lineare Planung





Nachweis sommerlicher WS


Umsetzung durch integrale Planung

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung

- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

Baurecht

- EnEV 2014/2016 → Nachweis zum sommerlichen Wärmeschutz nach DIN 4108-2
- Ausnahmen für:
 - Nichtwohngebäude (neu): Räume geringerer grundflächenbezogener Fensterflächenanteile je nach Orientierung zwischen 7 % bis 15 %
 - Wohngebäude (neu): Räume mit bis zu 35 % grundflächenbezogenem Fensterflächenanteil und baulichen Sonnenschutzmaßnahmen (außenliegender Sonnenschutz mit einem Abminderungsfaktor FC ≤ 0,30 bei einer Verglasung mit einem Gesamtenergiedurchlassgrad von g > 0,40 bzw. FC ≤ 0,35 bei einer Verglasung mit g ≤ 0,40)
 - Bestandsgebäude
 - Erweiterungen von Bestandsgebäuden mit einer Nutzfläche ≤ 50 m²
- Gebäude ohne Verpflichtung zum Nachweis können sich auch kritisch verhalten
- Befreiung von der Pflicht zum Nachweis:
 - Ist insofern nicht gleichzusetzen mit einer Befreiung von einer fachgerechten Planung und/oder
 - der Schaffung von Möglichkeiten, in derartigen Räumen unangemessen hohen sommerlichen Temperaturen entgegen wirken zu können
- UND:
 - Das Miet- und Arbeitsrecht kennt keine Unterscheidung zwischen Neubauten und Bestandsgebäuden

Privatrecht

- ermöglicht Vertragspartnern grundsätzlich eine freie Festlegung ihrer Rechtsbeziehungen
- Bestehen keine besonderen Vereinbarungen, dann:
 - kann ein Bauherr eine Planung nach den anerkannten Regeln der Technik erwarten
 - und die EnEV erhebt den Nachweis zum sommerlichen Wärmeschutz in den Rang einer anerkannten Regel der Technik,
 - kann ein Bauherr davon ausgehen, dass sein Gebäude entsprechend geplant und ausgeführt wird,
 - bedeutet dies wiederum, dass bei normativer Nutzung der Räume die zulässigen Sonneneintragskennwerte bzw. Übertemperaturgradstunden eingehalten werden.
- Bestehen auch den Planern bekannte Abweichungen von dieser normativen Nutzung, so
 - lässt sich hieraus ableiten, dass dann technische Möglichkeiten z. B. zum Kühlen geplant wurden und ausgeführt sind.

ANMERKUNG:

- Ein Bauherr kann die Pflichten eines Planers sowohl verschärfen als auch mindern.
- Sofern z. B. der Verzicht auf Sonnenschutzeinrichtungen nicht mit einer energieintensiven Kühlung aufgewogen wird, ist gesetzlich alles im grünen Bereich.
- Die sich hieraus ergebenen **Nutzungseinschränkungen** können aber später im Falle einer Vermietung Gründe für die **Anzeige eines Mangels der Mietsache durch den Mieter** sein.
- Die getroffene Festlegung mit dem Bauherrn befreit die Planer aus der Haftung, der Bauherr ist gegenüber dem Mieter jedoch nicht frei von seiner Verantwortung.

Arbeitsrecht

- Nichtwohngebäude fallen in den Anwendungsbereich der Arbeitsstättenverordnung ArbStättV bzw. der Arbeitsstättenrichtlinie ASR.
- Grundsätzlich ist ein Arbeitgeber bei Einrichtung einer Arbeitsstätte dazu verpflichtet, den Arbeitnehmern ein den formulierten Anforderungen entsprechendes Raumklima zur Verfügung zu stellen.
- Inhalt der ASR:
 - Sie definiert die Raumtemperatur als "Temperaturgröße aus der örtlichen Lufttemperatur und den Strahlungstemperaturen der einzelnen Umgebungsflächen",
 - die Lufttemperatur als "Temperatur der Luft ohne Einwirkung von Wärmestrahlung"
 - und die Messung.
 - Sie legt fest, dass "die Lufttemperatur in Arbeitsräumen + 26 °C nicht überschreiten soll."
 - Bei darüber liegender Außentemperatur darf in Ausnahmefällen die Lufttemperatur höher sein.
 - Es wird angegeben, dass an Fenstern, Oberlichtern oder Glaswänden je nach Arbeit und der Arbeitsstätte Abschirmungen gegen übermäßige Sonneneinstrahlung vorzusehen sind.
- Durch europäische Anpassungen der Arbeitsschutzgesetzgebung werden die aus den Unfallverhütungsvorschriften abgeleiteten Anforderungen an das Raumklima mehr und mehr durch die Berufsgenossenschaften festgelegt.
- Berufsgenossenschaftliche Informationen (kurz BGI) publizieren Vorgaben:
 - bei der Auswahl von Sonnen- und Blendschutzvorrichtungen für Räume mit Bildschirm- und Büroarbeitsplätzen
 - und Hinweise zur richtigen Bedienung der Sonnenschutzvorrichtungen.

Rechtsprechung

- Urteil des Bielefelder Landesgerichtes aus 2003
- Inhalt:
 - Einem Kläger wurde Recht gesprochen, in dessen angemieteten Räumen sich im Sommer längerfristig hohe Innentemperaturen einstellten.
 - Der beklagte Vermieter wurde verurteilt, sicherzustellen, dass in den frei belüfteten Arbeitsräumen eine Innentemperatur von + 26 °C nicht überschritten wird.
 - Ausnahme, bei höheren Außenlufttemperaturen als + 32 °C.
- In der Sache ähnliche Urteile wurden im Vorfeld vom OLG Köln 1991, OLG Hamm 1994, OLG Düsseldorf 1998 und vom OLG Rostock 2000 gesprochen.
- Es bestehen nicht geklärte Widersprüche:
 - Gebäude mit freier Lüftung ohne Technik können auch bei nachhaltigen Konzepten wie Nachtauskühlung eine vorgegebene Grenztemperatur nicht garantieren.
 - Die ArbStättV in Verbindung mit der ASR bezog sich bei der Angabe von Raumlufttemperaturgrenzen bei Urteilsverkündung nicht explizit auf Regelungen zum Sommerfall.
 - Grundlage für die Urteile waren alte Fassungen der DIN 1946-2 mit Gültigkeit für Räume mit raumlufttechnischen Anlagen.

ANMERKUNG:

 Der Planer und Prüfer muss die verkündeten Urteile bis zu einer angepassten Rechtsprechung weiterhin als existent betrachten.

Bezug auf: EnEV und DIN 4108-2

- EnEV 2014/2016 fordert den Nachweis des sommerlichen Wärmeschutzes nach DIN 4108-2:2013-02
- zwei unterschiedliche Nachweisverfahren:
 - (1) vereinfachtes Tabellenverfahren
 - (2) dynamisch-thermische **Simulationsrechnung** (u.a. wenn (1) nicht anwendbar ist)

Vorteile:

- Standardisierte Betrachtungen sind möglich.
- Wenn (1) nicht passt, kann (2) eine Lösung sein.

Nachteile:

- Es bestehen Einschränkungen der Nutzungsrandbedingungen bei Anwendung der DIN-Vorgaben.
- Basis für die Auswertung ist die Verwendung eines **Testreferenzjahres mit durchschnittlichen Außenklimaverhältnissen**.

Grenzen:

- Es erfolgt keine Bewertung von Behaglichkeitskriterien (direkte Strahlung, Bauteiltemperaturen im Einzelnen, Raumluftfeuchteverlauf).
- Nicht jede Simulationssoftware kann z.B. passive Kühlung abbilden.

Anwendung DIN 4108-2

Ergebnisse Simulationsverfahren DIN 4108-2 (typisches Beispielergebnis)

Randbedingungen	Max. operative Innentemperatur [°C]	Übertemperatur- gradstunden ≥ 26 °C TRY 04 [Kh/a]
Variante 1 (1)WSV g = 0,60 (2)kein ASS/ISS (3)kein zus. NLW	32,8	898
Variante 2 (1)WSV g = 0,60 (2)kein ASS/ISS (3)mit zus. NLW	31,6	605
Variante 3 (1)SSV g = 0,39 (2)kein ASS/ISS (3)mit zus. NLW	30,6	256
Variante 4 (1)WSV g = 0,60 (2)mit ASS Fc = 0,25 (3)mit zus. NLW	27,5	15
Vorgabe DIN 4108-2 N	500	

Anwendung DIN 4108-2

Ergebnisse Simulationsverfahren DIN 4108-2 (typisches Beispielergebnis)

Randbedingungen	Max. operative Innentemperatur [°C]	Übertemperatur- gradstunden ≥ 26 °C TRY 04 [Kh/a]
Variante 1 (1)WSV g = 0,60 (2)kein ASS/ISS (3)kein zus. NLW	32,8	898
Variante 2 (1)WSV g = 0,60 (2)kein ASS/ISS (3)mit zus. NLW	31,6	605
Variante 3 (1)SSV g = 0,39 (2)kein ASS/ISS (3)mit zus. NLW	30,6	256
Variante 4 (1)WSV g = 0,60 (2)mit ASS Fc = 0,25 (3) it is. ILW	27,5	15
Vorgabe DIN 4108-2 N	500	

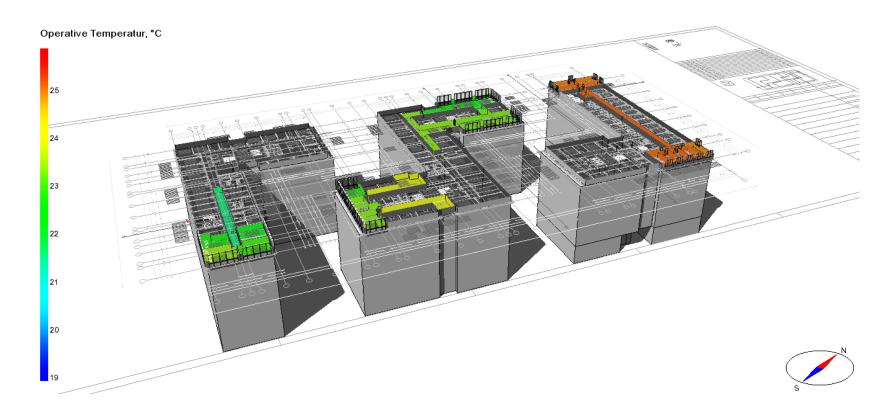
Anwendung DIN 4108-2

- Ein Raum (Fensterflächenanteil f_{WG} = 45 %, Raum nordwestorientiert)
- Prüfung durch Tabellenverfahren (Ansatz: keine Nachtlüftung)
- Ausschöpfung der Möglichkeiten der DIN V 18599-2 zum Ansatz von Gebäudeverschattung
- Ergebnis:
 - Sonnenschutzverglasung mit außenliegendem Sonnenschutz
- Prüfung durch Simulation mit Randbedingungen der DIN 4108-2 (zusätzlich: erhöhte interne Lasten)
- Ergebnis:
 - Keine direkte Besonnung
 - Wärmeschutzverglasung mit variablem innenliegendem Blend- und Sichtschutz
- Ursache:
 - Anwendung modifiziertes Simulationsverfahren
 - Einsatz von Lüftungsstrategien raumübergreifend (Mehrzonenmodell)
- Weitere Aspekte:
 - thermischer Komfort
 - visueller Komfort (Tageslichtversorgung)

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung

- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)


Anwendung integraler Planung

- Zertifizierungssysteme für nachhaltiges Bauen:
 - (1) BREEAM seit 1990 (Großbritannien)
 - (2) LEED seit Ende der 1990-er Jahre (USA)
 - (3) DGNB/BNB als deutsches System seit 2009
- deutsches System entwickelt vom DGNB und dem BMVBS
- DGNB leitete Steckbriefe für verschiedene Gebäudekategorien (u.a. für Wohngebäude, Büro- und Verwaltungsgebäude, Hotelgebäude)
- Nachteile:
 - Ein erhöhter planerischer Aufwand ist notwendig.
- Vorteile:
 - umfassende Bewertung von Behaglichkeitskriterien auf der Grundlage praxisbezogener Randbedingungen
 - Auswertung auf der Basis von Testreferenzjahren mit extremen Außenklimaverhältnissen (u.a. extremer Sommer)
 - Erwartungshaltung gegenüber künftigen Nutzern wird vorbestimmt
 - Rechtsicherheit für Planer, Bauherren und Vermieter wird geschaffen.
- Fazit:
 - Energie- und Kostenersparnis ergibt sich bei Anwendung der Simulation als integrales Planungswerkzeug.

5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)

- Hotel- und Office Campus (HOC) Berlin neben der Mercedes-Benz-Arena
 - Gesamtgebäude (3D-Darstellung Raumzonen im 5.OG

- Wieso besteht ein unterschiedlicher Bedarf?
 - Beschaffung von Bauleistungen Modellanalyse
- Warum besteht ein Bedarf überhaupt?
 - Gesetze und Normen
- 3. Wie kann der Bedarf gedeckt werden?
 - Lineare Planung
 - Integrale Planung

- Rechtliche Situation
- Normen, Nachweise und Richtlinien Beschreibung, Vor- und Nachteile, Grenzen
- 5. Wie kann der Mehrwert für einen AG aussehen? (Bsp. sommerlicher Wärmeschutz)
- 6. Zusammenfassung

6. Zusammenfassung

- Nicht die Rechtsprechung und die Vielzahl zum Teil konkurrierender Normen und Richtlinien darf im Vordergrund stehen.
- Separate Planungen stehen immer f

 ür Mehraufwand.
- Eine fehlende Abstimmung führt zu erhöhtem Technik- und Ausstattungsaufwand sowie dauerhaft höheren Folgekosten.
- Die lineare Gebäudeplanung muss in eine integrale Planung mit Anwendung moderner Simulationsmethoden überführt werden.

Vielen Dank für Ihre Aufmerksamkeit!

Andreas Wilke Ingenieurbüro für Bauphysik und Baukonstruktion GmbH

Büro Potsdam

Schlaatzweg 1, 14473 Potsdam Tel: 0331 / 730401-80 Fax: 0331 / 730401-89

Büro Berlin

Joachimstr. 7, 10119 Berlin Tel: 030 / 3744155-70 Fax: 030 / 3744155-99

Büro Hamburg

Steilshooper Str. 300 , 22309 Hamburg Tel: 040 / 639746-45 Fax: 040 / 639746-49

www.wilke-bauphysik.de info@wilke-bauphysik.de