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ABSTRACT 
The advent of equation-based modelling languages such as Modelica 
opens a new world of improved productivity to advanced 
simulationists. However, they also form an excellent basis for end-user 
applications intended for the less sophisticated user, who typically uses 
simulation as one of several aids for design decision support. In this 
context, the issue of automated data mapping from CAD and other 
more specialized design representations becomes important. This paper 
discusses the various design representations that are required for 
simulation and the mappings of data between them. A concrete 
example from automated generation of a large-scale equation model for 
building indoor climate and energy simulation is presented. 

INTRODUCTION 
Object-oriented equation-based modelling tools and associated 
languages such as Dymola (Elmqvist et al. 1996), gPROMS (Barton 
and Pantelides 1994, Oh and Pantelides 1996), IDA/NMF (Sahlin 
1996), and lately Modelica (Elmqvist et al. 1999) and VHDL-AMS 
(IEEE, 1997) allow management of large-scale simulation models with 
unprecedented efficiency. However, for a design engineer, with a need 
to rapidly and repeatedly evaluate a range of performance measures, 
these tools are rarely useful in their basic form. Several different 
simulation evaluations must be carried out to optimize the design, each 
one typically involving hundreds of parameters, driving functions and 
initial guesses. Task specific tools are therefore needed to set up the 
problem and large amounts of data have to be transferred from a CAD 
environment.  
 
3D CAD tools are today fully implemented in many (but not all) 
engineering fields. The evolution of Integrated Design Environments 
(IDE) such as IDEAS is a natural consequence, providing the user with 

advanced model analysis capabilities. In an IDE, not just geometry but 
other properties, such as material, color and texture of the design 
object are handled. Such an extended CAD representation which 
accommodates a large class of relevant data of a product is sometimes 
referred to as a product model.  
 
Product Data Models (PDM) are of course immensely more useful if 
they are standardized, so that product data can be communicated 
between different tools and actors. STEP (STandard for the Exchange 
of Product model data, ISO TC 184, 1993) is since the mid eighties an 
international effort to standardize product descriptions for many 
domains. EXPRESS (Schenck and Wilson 1994) is the data modelling 
language in which STEP models are described. However, the idea of a 
single, standardized product model that holds all relevant data of a 
complex design is today regarded to be quite utopic for most real-scale 
applications with multiple actors. Every aspect of and actor on the 
design has special information needs that in most cases would be 
impossible to fully integrate within a finite amount of work. And even 
if an agreement about the content and structure of such a grand model 
indeed was reached, it would be utterly impractical to use and soon be 
dated.  
 
The solution is to limit the scope of the central product model to the 
key data that is of interest to several different actors and to introduce 
instead a number of aspect models that are tailored to certain design 
tasks. An aspect model may contain additional information and there 
may even be a semantic mismatch between a given aspect model and 
the central product model. The existence of multiple aspect models, the 
integrity of which must be kept intact through the design evolution, 
necessitates efficient methods for data mapping between different 
design representations. 
 
The objective of this paper is to discuss some of the aspect models and 
mapping methods that are needed for simulation design tasks. We will 
especially focus on data mapping to the aspect models that are formed 
by modern equation-based simulation models. 
 
In the next section, an overview of needed representations and 
mapping methods is given. This is followed by a presentation of a tool 
for two of the final stages in the required chain of representations, IDA 
Modeller. Finally a concrete application example of data mapping in 
IDA Modeller is presented and discussed.  

SIMULATION DATA FROM PRODUCT MODELS 
In a future oriented design scenario, multiple formal representations of 
the design must coexist. A number of special purpose models (aspect 
models) derive their data from a central product model (Figure 1). For 
a certain object-oriented simulation exercise, an appropriate chain of 
representations might be: 
 
1.  A general product model. This is the repository of all common 

project data. From this representation, all interesting views are 
derived, e.g., drawings, bills of materials, costs, and input data for 
various simulation tools. All members of a design team interact 
with the product model. The product model must evolve in 
structure and complexity in parallel with the progress of the design.  
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Figure 1. Several Design Tasks interact with a central 
Product Model. Some design tasks utilize simulation 
decision support. Each type of simulation requires a 

separate aspect model of the design. 
 



2.  A physically oriented aspect model for a certain type of simulation. 
This is a physical description of the design that contains all the 
data that are relevant for a certain class of simulation experiments. 
Designers (not simulation experts) interact with this representation 
to formulate simulation experiments in physical terms. The aspect 
model may be locally edited to optimize the design without need to 
involve the general product model in each design iteration.  

3.  The mathematical representation. This is the realm of object-
oriented simulation languages such as Modelica. At this level, the 
design is represented by a large hybrid differential-algebraic system 
of equations. Manipulation of the model generally requires 
mathematical modelling skills far beyond those of a design 
engineer.  

 
Data for each successive stage is derived (mapped) from the previous. 
The user must also at each stage be able to view, manipulate, and add 
to the automatically derived data. The mapping of data between each 
stage must be transparent, so that a critical user can resolve the origin 
(in the previous stage) and processing background of each datum. 
Enabling quality assurance of the data mapping process is equally 
important as the validation of the general, unparameterized, simulation 
model itself. 
 
Traditional task specific industrial simulation tools are typically limited 
to level 2 in the depicted scenario. The mathematical representation of 
the simulated system (level 3) is frequently hidden inside the 

simulation tool, without possibility of user inspection or manipulation. 
Usually both the mathematical representation itself and the mapping of 
data to this representation are informal. The user is unable to inspect 
the mapping code and resulting equations. This lack of transparency 
and formality creates a situation where the user is left to trust that the 
simulation tool does a sufficiently good job, without having a real 
possibility to check this in detail for a given case. If, on the other hand, 
a formal language such as Modelica is used for the simulation model, 
sufficient transparency can be provided to enable quality control of the 
generated model. 
 
Development and standardization of general product models (level 1) 
is still to a large extent a research topic. The issue of data mapping 
from a STEP based general product model to various aspect models for 
simulation has been studied in several projects, e.g., the European 
COMBINE projects (Augenbroe 1995). For several applications, 
where the complexity and/or standardization level of the underlying 
product model is limited, commercial integrated design environments 
with simulation support has existed for some time. However, most 
(all?) of these environments make use of traditional, monolithic, 
simulation tools and neither the mapping process, nor the generated 
mathematical model are open for quality assurance.  
 
In the remainder of this paper, we will concentrate on a tool for design 
representation at levels 2 and 3, IDA Modeller, and associated 
transparent data mapping techniques. Usage of IDA Modeller is 
illustrated by an IDA-based building simulation application, IDA 

 
Figure 2. The (level 2) physical view of a building for thermal simulation of indoor climate. Geometrical and material data may 
be imported from a CAD representation. The user adds data as necessary for the simulation experiment. For a one-room model, 

as depicted, the user has access to a few hundred parameters in the physical view. 



Indoor Climate and Energy (ICE), that gives users full access to levels 
2 and 3, and to the data mapping between these levels. This application 
is installed in about two hundred copies in Scandinavian design 
offices. 

IDA MODELLER 
IDA Modeller is the front-end of the IDA Simulation Environment. 
Models in IDA are described by hybrid differential-algebraic systems 
of equations. Presently the Neutral Model Format (NMF) (Sahlin et al. 
1996) is used to express models. Work is underway to also allow 
Modelica models. IDA Solver is the numerical solver of the IDA 
Simulation Environment. IDA Solver relies on pre-compiled (and non-
causal) component models (packaged as Windows DLL's.) Due to this, 
users of IDA applications may freely interconnect component models, 
without need for a compiler. This allows shipment of very flexible end-
user applications at a low cost.  
 
In the most common ICE simulation project, the user builds a model of 
his system in the physical view, performs a simulation experiment and 
inspects the results in the same view. The level 3 (math) representation 
of the system is generated "on the fly" and is never presented to the 
user. However, in many cases, there is a need to inspect or adapt the 
math model directly. In such cases, a separate instantiated data model 
is kept for each level. A third alternative is available for advanced 
users. They may directly build a math model of the simulated system 
using the precompiled component models. Conceptually, this 

corresponds to the work of building a SIMULINK model with ready-
made components. However, acausal (input-output free) port-level 
connections, variable units and descriptions, make the work a great 
deal more productive. 
 
In other IDA end-user applications, the user interface is less 
sophisticated, and the level 3 model is the only representation of the 
simulated system. Figure 4 shows an example of such an application 
for clean-room design. Additional (physical level) parameters are then 
tagged on to the instantiated components and subsystems to provide 
the user with modelling support. The application also typically 
contains assertion algorithms to support the user in the correct 
formulation of solvable problems and to distribute "global" parameters 
into the various components. 

DATA MAPPING  
The code for generation of the math model from the physical (level 2) 
system description may become quite complex for real-scale 
applications. The readability and structure of this code is essential to 
reach the objective of a maintainable and quality assurable application. 
Several dedicated data mapping languages exist in the STEP world, 
e.g. EXPRESS-M, C, V, and X (Verhoef et al. 1995). A 3D CAD 
mapping tool for ICE (Nordqvist and Noack 1997) relies for example 
on EXPRESS-C. However, a detailed discussion of mapping language 
properties is beyond our scope here.  
 

 
Figure 3. The (level 3) mathematical view of the simulated system. In IDA Modeller, this view is described with NMF. The depicted 

model of a single room has approximately 600 equations and a similar number of parameters. It may be interactively edited by the user. 
Typical simulation experiments take a few minutes to simulate and encompass a few thousand timesteps. Large models may involve 

some ten thousand equations. Simulation time increases about linearly with problem size. 



IDA Modeller relies on a tailored mapping language for the 
instantiation, parameterization and connection of math models. The 
ICE application contains approximately two thousand lines of such 
mapping code. Below is an example of the operations and code that are 
involved in a typical generation segment. 

Example: spawning a radiator 
In the lower left corner of Figure 2, a water-based radiator has been 
added to the level 2 model. The size of the physical box represents in 
this case the physical dimensions of the radiator. Opening the radiator 
will reveal an additional four parameters that are required to 
characterize the device in level 2. (These may also be accessed from a 
data base). However, the single object (the radiator) that has been 
added to the level 2 description leads to a number of required level 3 
objects and generation operations. The following steps are carried out: 
 
1) Generate the following NMF objects in the room subsystem (c.f. 

Figure 3, right window, lower left corner) 
a) A proportional controller for the mass flow through the 

radiator 
b) A piece of wall (1D transient conduction model) behind the 

radiator 
c) A model for calculation of solar radiation and other ambient 

conditions behind the radiator 
d) The radiator itself  

2) Extend the vector of Hot-and-cold-subsurfaces in the radiation 
model of the room; provide the physical coordinates of the new 
surface 

3) On the parent level above the room, instantiate a supply and 
return water system, if it does not already exist.  

 
The automated instantiation of a level 3 component, e.g. the radiator, 
involves the following principal steps:  
 

i. Compute any local variables 
ii. Compute the graphical position of the component 
iii. Compute and transfer all non-default parameters 
iv. Make logical and graphical connections to neighboring 

components  
v. Make logical and graphical connections to the boundary of 

the current subsystem 
 
Below is a sample fragment of the generation code for the instantiation 
of the radiator objects of a room (step 1d above). The lisp oriented 
syntax has been chosen for ease of implementation rather than beauty. 
The mapping language will in the future most likely be made a part of 
the general script language of IDA, but this is still an area of active 
experimentation and development. 
 
(:group WatRad ;;generate a group of objects with names starting with "WatRad" 
 
  :source 
        ;generate an ordered list of source objects 
        (:call list-water_radiator :zone) 
 
  :type CEWatHet ; NMF type to instantiate 
 
  :set ((nHCSurf (:call get-HCSurf-number :zone :source)) ; compute object's number 
         ) 
 
        ;; instantiate at this graphical position 
  :at (180 (+ 70 (i* 120 nHCSurf)) 205 (+ 125 (i* 120 nHCSurf))) 
 
  :parameters ;; parameter mapping from source to target object 
       ;;<to par>   <from source> 
        ((k          k) 
         (n          n) 
         (strip_h    strip_width)  
         (length     (/ (* dx dy) strip_width))  
         (cp_liq     [:building syspars cpliq]) 
         (hback      -1) 
         (dP0        [:building syspars dp0_water]) 
         (mmax       design_massflow) 
         (mmin       [:building syspars water_mmin]) 
 
         ;initial values 
         (DpOK       1) 
         (Mok        1) 

 
Figure 4. A sample project from a clean room design application. 



         ) 
 
  :set ((yincr (i* 120 nhcsurf))) 
  :connections ;; make logical and graphical port connections 
   
            ((Front    (nmfzone TqHCFront nhcsurf)  :at  ((204 (+ 83 yincr))  (219 205))) 
             (BackConv (nmfzone TqHCBack  nhcsurf)  :at ((204 (+ 112 yincr)) (219 227))) 
             (BackWall ((:format "HCBackwall_~D" nhcsurf) Term_a) 
                 :at ((181 (+ 92 yincr)) (159 (+ 92 yincr)))) 
             (Control         ((:format "WatRadCtrl_~D" :number) OutSignalLink 1) 
                 :at ((198 (+ 71 yincr)) (198 (+ 53 yincr)) (169 (+ 53 yincr)))) 
             (AirTemp         ((:format "WatRadCtrl_~D" :number) MeasureLink) 
                 :at  ((188 (+ 71 yincr)) (188 (+ 62 yincr)) (169 (+ 62 yincr)))) 
             ) 
  :boundary-connections ;; connect with subsystem boundary (for further connection by parent) 
 
             ((Inlet       (:format "Sup_hot_~D" :number) 
                :at ((197 (+ 124 yincr)) (197 (+ 143 yincr)) (10 (+ 143 yincr))) 
                :role sup_hot 
                :line-color #.red 
                :line-style 2) 
              (Outlet      (:format "Rtn_hot_~D" :number) 
                :at ((187 (+ 124 yincr)) (187 (+ 135 yincr)) (10 (+ 135 yincr))) 
                :role rtn_hot 
                :line-style 2) 
             ) 
 
  ) 

 
The generation clause creates a group of level 3 objects. It is driven by 
a corresponding list of level 2 source objects. Each water based 
radiator belongs to the array of source objects of class HCSurf (Hot 
and Cold Surfaces.) Other members in this array may be, e.g., electric 
radiators and cooling panels. nHCSurf refers to the radiator's identity in 
the array of HCSurfaces. This number is used to identify the proper 
connection partners and ports in the neighboring components. 

EXPERIENCES WITH THE CURRENT IMPLEMENTATION 
The current level 2 to 3 mapping method has proven to be easy to 
implement and maintain. It is believed to be a great deal more practical 
than a corresponding hard coding (as normal methods of source and 
target objects) would have been. Nevertheless, it is wanting in several 
ways. From the point of view of the end-user, two major problems 
exist: 
 
1. Each update of level 2 and corresponding level 3 generation will 

overwrite the previous level 3 model. There is currently no way to 
use the powerful generation mechanisms repeatedly while 
working at level 3. A simple way to partly alleviate this problem 
would be to allow recording of level 3 user operations and then 
provide the possibility of replay after a new level 3 model has 
been created. Such a solution is underway but is likely to have the 
common problems of any macro recording, i.e. unpredictable 
results when applied in a different context. Another way to solve 
the overwrite problem would be to let the user explicitly control 
what part of the model that is regenerated. This, on the other 
hand, may be difficult to use correctly, since most users are only 
vaguely aware of the structure of the source and target models. A 
third way might be to allow incremental generation of the level 3 
model triggered by changes in the level 2 description. 

2. The current generation algorithm will name spawned objects 
according to its own needs. It is difficult for the user to trace the 
origin of a level 3 object without resorting to identification by 
parameter values. This problem is rather straightforward to solve 
at the expense of some algorithm and/or name structure 
complexity.  

 
In spite of these problems, the current implementation works well for a 
great majority of ICE users. There is ample opportunity to study user 
behavior in order to create practical solutions to the problems 
discussed. 

CONCLUSIONS 
The new object-oriented and equation-based simulation methods are 
structured and robust enough to enable usage of automated model 
generation mechanisms. This in turn enables us to build end-user 
simulation applications with unprecedented structure, transparency and 

maintenance properties. However, new areas of needed research and 
development are also uncovered in the area of mapping between 
different types of data models.  
 
At this point, we would argue that equation-based target models are 
sufficiently special to motivate tailored mapping methods, some 
examples of which have been illustrated in this paper. However, it 
would be an interesting exercise to use some of the general mapping 
languages (Verhoef et al. 1995) for the same purpose, to investigate 
their relative performance.  
 
If the tailored mapping methods indeed prove superior, it is a natural 
consequence to standardize their form in languages such as Modelica. 
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