
A TOOL FOR DATA MAPPING FROM DESIGN PRODUCT MODELS TO OBJECT-ORIENTED
SIMULATION MODELS

Per Sahlin

Bris Data AB

Västerlånggatan 27, 111 29 Stockholm, SWEDEN
per.sahlin@brisdata.se

www.brisdata.se

KEYWORDS
CAD, product model, continuous simulation, hybrid simulation, data
mapping

ABSTRACT
The advent of equation-based modelling languages such as Modelica
opens a new world of improved productivity to advanced
simulationists. However, they also form an excellent basis for end-user
applications intended for the less sophisticated user, who typically uses
simulation as one of several aids for design decision support. In this
context, the issue of automated data mapping from CAD and other
more specialized design representations becomes important. This paper
discusses the various design representations that are required for
simulation and the mappings of data between them. A concrete
example from automated generation of a large-scale equation model for
building indoor climate and energy simulation is presented.

INTRODUCTION
Object-oriented equation-based modelling tools and associated
languages such as Dymola (Elmqvist et al. 1996), gPROMS (Barton
and Pantelides 1994, Oh and Pantelides 1996), IDA/NMF (Sahlin
1996), and lately Modelica (Elmqvist et al. 1999) and VHDL-AMS
(IEEE, 1997) allow management of large-scale simulation models with
unprecedented efficiency. However, for a design engineer, with a need
to rapidly and repeatedly evaluate a range of performance measures,
these tools are rarely useful in their basic form. Several different
simulation evaluations must be carried out to optimize the design, each
one typically involving hundreds of parameters, driving functions and
initial guesses. Task specific tools are therefore needed to set up the
problem and large amounts of data have to be transferred from a CAD
environment.

3D CAD tools are today fully implemented in many (but not all)
engineering fields. The evolution of Integrated Design Environments
(IDE) such as IDEAS is a natural consequence, providing the user with

advanced model analysis capabilities. In an IDE, not just geometry but
other properties, such as material, color and texture of the design
object are handled. Such an extended CAD representation which
accommodates a large class of relevant data of a product is sometimes
referred to as a product model.

Product Data Models (PDM) are of course immensely more useful if
they are standardized, so that product data can be communicated
between different tools and actors. STEP (STandard for the Exchange
of Product model data, ISO TC 184, 1993) is since the mid eighties an
international effort to standardize product descriptions for many
domains. EXPRESS (Schenck and Wilson 1994) is the data modelling
language in which STEP models are described. However, the idea of a
single, standardized product model that holds all relevant data of a
complex design is today regarded to be quite utopic for most real-scale
applications with multiple actors. Every aspect of and actor on the
design has special information needs that in most cases would be
impossible to fully integrate within a finite amount of work. And even
if an agreement about the content and structure of such a grand model
indeed was reached, it would be utterly impractical to use and soon be
dated.

The solution is to limit the scope of the central product model to the
key data that is of interest to several different actors and to introduce
instead a number of aspect models that are tailored to certain design
tasks. An aspect model may contain additional information and there
may even be a semantic mismatch between a given aspect model and
the central product model. The existence of multiple aspect models, the
integrity of which must be kept intact through the design evolution,
necessitates efficient methods for data mapping between different
design representations.

The objective of this paper is to discuss some of the aspect models and
mapping methods that are needed for simulation design tasks. We will
especially focus on data mapping to the aspect models that are formed
by modern equation-based simulation models.

In the next section, an overview of needed representations and
mapping methods is given. This is followed by a presentation of a tool
for two of the final stages in the required chain of representations, IDA
Modeller. Finally a concrete application example of data mapping in
IDA Modeller is presented and discussed.

SIMULATION DATA FROM PRODUCT MODELS
In a future oriented design scenario, multiple formal representations of
the design must coexist. A number of special purpose models (aspect
models) derive their data from a central product model (Figure 1). For
a certain object-oriented simulation exercise, an appropriate chain of
representations might be:

1. A general product model. This is the repository of all common

project data. From this representation, all interesting views are
derived, e.g., drawings, bills of materials, costs, and input data for
various simulation tools. All members of a design team interact
with the product model. The product model must evolve in
structure and complexity in parallel with the progress of the design.

PM

Simulation aspect models

DT
DT

DT

DTDTDT

DT

DT

DT

Figure 1. Several Design Tasks interact with a central
Product Model. Some design tasks utilize simulation
decision support. Each type of simulation requires a

separate aspect model of the design.

2. A physically oriented aspect model for a certain type of simulation.
This is a physical description of the design that contains all the
data that are relevant for a certain class of simulation experiments.
Designers (not simulation experts) interact with this representation
to formulate simulation experiments in physical terms. The aspect
model may be locally edited to optimize the design without need to
involve the general product model in each design iteration.

3. The mathematical representation. This is the realm of object-
oriented simulation languages such as Modelica. At this level, the
design is represented by a large hybrid differential-algebraic system
of equations. Manipulation of the model generally requires
mathematical modelling skills far beyond those of a design
engineer.

Data for each successive stage is derived (mapped) from the previous.
The user must also at each stage be able to view, manipulate, and add
to the automatically derived data. The mapping of data between each
stage must be transparent, so that a critical user can resolve the origin
(in the previous stage) and processing background of each datum.
Enabling quality assurance of the data mapping process is equally
important as the validation of the general, unparameterized, simulation
model itself.

Traditional task specific industrial simulation tools are typically limited
to level 2 in the depicted scenario. The mathematical representation of
the simulated system (level 3) is frequently hidden inside the

simulation tool, without possibility of user inspection or manipulation.
Usually both the mathematical representation itself and the mapping of
data to this representation are informal. The user is unable to inspect
the mapping code and resulting equations. This lack of transparency
and formality creates a situation where the user is left to trust that the
simulation tool does a sufficiently good job, without having a real
possibility to check this in detail for a given case. If, on the other hand,
a formal language such as Modelica is used for the simulation model,
sufficient transparency can be provided to enable quality control of the
generated model.

Development and standardization of general product models (level 1)
is still to a large extent a research topic. The issue of data mapping
from a STEP based general product model to various aspect models for
simulation has been studied in several projects, e.g., the European
COMBINE projects (Augenbroe 1995). For several applications,
where the complexity and/or standardization level of the underlying
product model is limited, commercial integrated design environments
with simulation support has existed for some time. However, most
(all?) of these environments make use of traditional, monolithic,
simulation tools and neither the mapping process, nor the generated
mathematical model are open for quality assurance.

In the remainder of this paper, we will concentrate on a tool for design
representation at levels 2 and 3, IDA Modeller, and associated
transparent data mapping techniques. Usage of IDA Modeller is
illustrated by an IDA-based building simulation application, IDA

Figure 2. The (level 2) physical view of a building for thermal simulation of indoor climate. Geometrical and material data may
be imported from a CAD representation. The user adds data as necessary for the simulation experiment. For a one-room model,

as depicted, the user has access to a few hundred parameters in the physical view.

Indoor Climate and Energy (ICE), that gives users full access to levels
2 and 3, and to the data mapping between these levels. This application
is installed in about two hundred copies in Scandinavian design
offices.

IDA MODELLER
IDA Modeller is the front-end of the IDA Simulation Environment.
Models in IDA are described by hybrid differential-algebraic systems
of equations. Presently the Neutral Model Format (NMF) (Sahlin et al.
1996) is used to express models. Work is underway to also allow
Modelica models. IDA Solver is the numerical solver of the IDA
Simulation Environment. IDA Solver relies on pre-compiled (and non-
causal) component models (packaged as Windows DLL's.) Due to this,
users of IDA applications may freely interconnect component models,
without need for a compiler. This allows shipment of very flexible end-
user applications at a low cost.

In the most common ICE simulation project, the user builds a model of
his system in the physical view, performs a simulation experiment and
inspects the results in the same view. The level 3 (math) representation
of the system is generated "on the fly" and is never presented to the
user. However, in many cases, there is a need to inspect or adapt the
math model directly. In such cases, a separate instantiated data model
is kept for each level. A third alternative is available for advanced
users. They may directly build a math model of the simulated system
using the precompiled component models. Conceptually, this

corresponds to the work of building a SIMULINK model with ready-
made components. However, acausal (input-output free) port-level
connections, variable units and descriptions, make the work a great
deal more productive.

In other IDA end-user applications, the user interface is less
sophisticated, and the level 3 model is the only representation of the
simulated system. Figure 4 shows an example of such an application
for clean-room design. Additional (physical level) parameters are then
tagged on to the instantiated components and subsystems to provide
the user with modelling support. The application also typically
contains assertion algorithms to support the user in the correct
formulation of solvable problems and to distribute "global" parameters
into the various components.

DATA MAPPING
The code for generation of the math model from the physical (level 2)
system description may become quite complex for real-scale
applications. The readability and structure of this code is essential to
reach the objective of a maintainable and quality assurable application.
Several dedicated data mapping languages exist in the STEP world,
e.g. EXPRESS-M, C, V, and X (Verhoef et al. 1995). A 3D CAD
mapping tool for ICE (Nordqvist and Noack 1997) relies for example
on EXPRESS-C. However, a detailed discussion of mapping language
properties is beyond our scope here.

Figure 3. The (level 3) mathematical view of the simulated system. In IDA Modeller, this view is described with NMF. The depicted

model of a single room has approximately 600 equations and a similar number of parameters. It may be interactively edited by the user.
Typical simulation experiments take a few minutes to simulate and encompass a few thousand timesteps. Large models may involve

some ten thousand equations. Simulation time increases about linearly with problem size.

IDA Modeller relies on a tailored mapping language for the
instantiation, parameterization and connection of math models. The
ICE application contains approximately two thousand lines of such
mapping code. Below is an example of the operations and code that are
involved in a typical generation segment.

Example: spawning a radiator
In the lower left corner of Figure 2, a water-based radiator has been
added to the level 2 model. The size of the physical box represents in
this case the physical dimensions of the radiator. Opening the radiator
will reveal an additional four parameters that are required to
characterize the device in level 2. (These may also be accessed from a
data base). However, the single object (the radiator) that has been
added to the level 2 description leads to a number of required level 3
objects and generation operations. The following steps are carried out:

1) Generate the following NMF objects in the room subsystem (c.f.

Figure 3, right window, lower left corner)
a) A proportional controller for the mass flow through the

radiator
b) A piece of wall (1D transient conduction model) behind the

radiator
c) A model for calculation of solar radiation and other ambient

conditions behind the radiator
d) The radiator itself

2) Extend the vector of Hot-and-cold-subsurfaces in the radiation
model of the room; provide the physical coordinates of the new
surface

3) On the parent level above the room, instantiate a supply and
return water system, if it does not already exist.

The automated instantiation of a level 3 component, e.g. the radiator,
involves the following principal steps:

i. Compute any local variables
ii. Compute the graphical position of the component
iii. Compute and transfer all non-default parameters
iv. Make logical and graphical connections to neighboring

components
v. Make logical and graphical connections to the boundary of

the current subsystem

Below is a sample fragment of the generation code for the instantiation
of the radiator objects of a room (step 1d above). The lisp oriented
syntax has been chosen for ease of implementation rather than beauty.
The mapping language will in the future most likely be made a part of
the general script language of IDA, but this is still an area of active
experimentation and development.

(:group WatRad ;;generate a group of objects with names starting with "WatRad"

 :source
 ;generate an ordered list of source objects
 (:call list-water_radiator :zone)

 :type CEWatHet ; NMF type to instantiate

 :set ((nHCSurf (:call get-HCSurf-number :zone :source)) ; compute object's number
)

 ;; instantiate at this graphical position
 :at (180 (+ 70 (i* 120 nHCSurf)) 205 (+ 125 (i* 120 nHCSurf)))

 :parameters ;; parameter mapping from source to target object
 ;;<to par> <from source>
 ((k k)
 (n n)
 (strip_h strip_width)
 (length (/ (* dx dy) strip_width))
 (cp_liq [:building syspars cpliq])
 (hback -1)
 (dP0 [:building syspars dp0_water])
 (mmax design_massflow)
 (mmin [:building syspars water_mmin])

 ;initial values
 (DpOK 1)
 (Mok 1)

Figure 4. A sample project from a clean room design application.

)

 :set ((yincr (i* 120 nhcsurf)))
 :connections ;; make logical and graphical port connections

 ((Front (nmfzone TqHCFront nhcsurf) :at ((204 (+ 83 yincr)) (219 205)))
 (BackConv (nmfzone TqHCBack nhcsurf) :at ((204 (+ 112 yincr)) (219 227)))
 (BackWall ((:format "HCBackwall_~D" nhcsurf) Term_a)
 :at ((181 (+ 92 yincr)) (159 (+ 92 yincr))))
 (Control ((:format "WatRadCtrl_~D" :number) OutSignalLink 1)
 :at ((198 (+ 71 yincr)) (198 (+ 53 yincr)) (169 (+ 53 yincr))))
 (AirTemp ((:format "WatRadCtrl_~D" :number) MeasureLink)
 :at ((188 (+ 71 yincr)) (188 (+ 62 yincr)) (169 (+ 62 yincr))))
)
 :boundary-connections ;; connect with subsystem boundary (for further connection by parent)

 ((Inlet (:format "Sup_hot_~D" :number)
 :at ((197 (+ 124 yincr)) (197 (+ 143 yincr)) (10 (+ 143 yincr)))
 :role sup_hot
 :line-color #.red
 :line-style 2)
 (Outlet (:format "Rtn_hot_~D" :number)
 :at ((187 (+ 124 yincr)) (187 (+ 135 yincr)) (10 (+ 135 yincr)))
 :role rtn_hot
 :line-style 2)
)

)

The generation clause creates a group of level 3 objects. It is driven by
a corresponding list of level 2 source objects. Each water based
radiator belongs to the array of source objects of class HCSurf (Hot
and Cold Surfaces.) Other members in this array may be, e.g., electric
radiators and cooling panels. nHCSurf refers to the radiator's identity in
the array of HCSurfaces. This number is used to identify the proper
connection partners and ports in the neighboring components.

EXPERIENCES WITH THE CURRENT IMPLEMENTATION
The current level 2 to 3 mapping method has proven to be easy to
implement and maintain. It is believed to be a great deal more practical
than a corresponding hard coding (as normal methods of source and
target objects) would have been. Nevertheless, it is wanting in several
ways. From the point of view of the end-user, two major problems
exist:

1. Each update of level 2 and corresponding level 3 generation will

overwrite the previous level 3 model. There is currently no way to
use the powerful generation mechanisms repeatedly while
working at level 3. A simple way to partly alleviate this problem
would be to allow recording of level 3 user operations and then
provide the possibility of replay after a new level 3 model has
been created. Such a solution is underway but is likely to have the
common problems of any macro recording, i.e. unpredictable
results when applied in a different context. Another way to solve
the overwrite problem would be to let the user explicitly control
what part of the model that is regenerated. This, on the other
hand, may be difficult to use correctly, since most users are only
vaguely aware of the structure of the source and target models. A
third way might be to allow incremental generation of the level 3
model triggered by changes in the level 2 description.

2. The current generation algorithm will name spawned objects
according to its own needs. It is difficult for the user to trace the
origin of a level 3 object without resorting to identification by
parameter values. This problem is rather straightforward to solve
at the expense of some algorithm and/or name structure
complexity.

In spite of these problems, the current implementation works well for a
great majority of ICE users. There is ample opportunity to study user
behavior in order to create practical solutions to the problems
discussed.

CONCLUSIONS
The new object-oriented and equation-based simulation methods are
structured and robust enough to enable usage of automated model
generation mechanisms. This in turn enables us to build end-user
simulation applications with unprecedented structure, transparency and

maintenance properties. However, new areas of needed research and
development are also uncovered in the area of mapping between
different types of data models.

At this point, we would argue that equation-based target models are
sufficiently special to motivate tailored mapping methods, some
examples of which have been illustrated in this paper. However, it
would be an interesting exercise to use some of the general mapping
languages (Verhoef et al. 1995) for the same purpose, to investigate
their relative performance.

If the tailored mapping methods indeed prove superior, it is a natural
consequence to standardize their form in languages such as Modelica.

REFERENCES
Augenbroe, G.L.M. (ed.). 1995. Combine 2 Final report, Contract
JOU2-CT92-0196, Delft Univ. of Technology, 1995

Barton P.I., and C.C. Pantelides. 1994. "Modeling of combined
discrete/continuous processes". AIChE J., 40, pp. 966--979, 1994

Bris Data AB. 1999. IDA Simulation Environment - User's Manual,
Bris Data AB, Stockholm, Sweden, September 1999 (see also
http://www.brisdata.se)

Elmqvist H., D. Brück, and M. Otter. 1996. Dymola --- User's Manual.
Dynasim AB, Research Park Ideon, Lund, Sweden, 1996

H. Elmqvist, B. Bachmann, F. Boudaud, J. Broenink, D. Brück, T.
Ernst, R. Franke, P. Fritzson, A. Jeandel, P. Grozman, K. Juslin, D.
Kågedahl, M. Klose, N. Loubere, S. E. Mattsson, P. Mostermann, H.
Nilsson, M. Otter, P. Sahlin, A. Schneider, H. Tummescheit,
H.Vangheluwe. 1999. "Modelica 1.2 - A Unified Object-Oriented
Language for Physical Systems Modeling. TUTORIAL and
RATIONALE". June 15, 1999 (available at http://www.modelica.org)

IEEE. 1997. "Standard VHDL Analog and Mixed-Signal Extensions".
Technical Report IEEE 1076.1, IEEE, March 1997

ISO TC 184. 1993. The STEP Standard, draft international standard
DIS 10303, continuously since 1992 published in several different
parts

Oh M., and C.C. Pantelides 1996. "A modelling and simulation
language for combined lumped and distributed parameter systems".
Computers and Chemical Engineering, 20, pp. 611--633, 1996

Nordqvist, W. and R. Noack. 1997. "A Mapping Study", Dept. of
Construction Management and Economics, KTH, Stockholm, 1997

Sahlin. P., A. Bring, E.F.Sowell. 1996. "The Neutral Model Format for
Building Simulation, Version 3.02", Dept. of Building Sciences, KTH,
Stockholm, June 1996 (available at http://www.brisdata.se/nmf)

Schenck, D.A., and P.R. Wilson. 1994. Information Modeling: The
EXPRESS Way, ISBN 0-19-508714-3, Oxford Univ. Press, 1994

Verhoef, M., T. Liebich and R. Amor. 1995. A multi-paradigm
mapping method survey, Fischer, Law and Luiten (eds), "Modelling Of
Buildings Through Their Life-Cycle", IB/W78-TG10 publication 180,
p 233-247, Stanford University, August 1995

