
Building Services Engineering
Bulletin no. 39

PER SAHLIN

Department of Building Sciences
Division of Building Services Engineering

Royal Institute of Technology
STOCKHOLM 100 44, SWEDEN

May 1996

ISSN 0284 - 141X
ISRN KTH/IT/M--39--SE

Modelling and Simulation Methods for
Modular Continuous Systems in Buildings



2

This work is supported in part by the Swedish Council for Building Research, the
Swedish National Board for Industrial and Technical Development, the Nordic
Construction Company, the Development Fund of the Swedish Construction Industry,
the American Society for Heating, Refrigerating and Air-conditioning Engineers,
ASEA Brown-Boveri, and the following member companies of the IDA consortium:

ABB Airtech AB, Bengt Dahlgren AB/ CLC VVS-Energiconsult AB, Bo Lönner AB,
Confortia AB, Energo AB, ENESSEN AB, EVR & Wahlings AB, FLK AB, Helenius
Ingenjörsbyrå AB, INCOORD, LGM Consult AB, NCC, Postfastigheter AB, SCC
VVS-Teknik AB, SIKAB Installationskonsulter, Skandia Fastigheter, Skanska Teknik
AB, SP, Stifab-Farex AB, Stockholm Konsult, Strängbetong, Svenska Bostäder,
Swedisol, TeknoTerm, Theorells, Tour & Andersson AB, Vasakronan AB, ÅF-VVS
Projekt AB,



3

Modelling and Simulation Methods for Modular Continuous Systems in Buildings
Per Sahlin, Department of Building Sciences
Royal Institute of Technology, S-100 44 STOCKHOLM, SWEDEN

Abstract
Many special purpose computer programs for simulation of physical systems are in
operation today. In industrial applications, they dominate completely over general
purpose simulation environments. To gain runtime efficiency, often on yesterdays
computers, the mathematical models of the tailored tools are frequently intertwined
with the coded solution procedure, creating a monolithic structure. This makes it
difficult to understand and improve the implemented models, also for the original
developers. In the field of building simulation, researchers agree that the monolithic
programs will be impossible to upgrade and maintain in the long term.

This thesis treats the design of the general purpose simulation environment IDA, and
of the Neutral Model Format (NMF), a program independent language for modelling
of dynamical systems using differential-algebraic equations with discrete events. IDA
and NMF are used to effectively develop special purpose GUI-based tools that (1) are
easy to use for end users without simulation expertise, and that (2) have good pros-
pects for long term maintenance and reuse. IDA and NMF also serve as a general
modelling and development environment for the sophisticated user.

The development of IDA commenced in 1987 at the Swedish Institute of Applied
Mathematics. IDA has been used externally since 1990, primarily for simulation of
building and energy systems. IDA applications and NMF model libraries have been
developed for, e.g., district heating substations, fire scenarios in offshore structures,
natural ventilation of buildings, building energy and loads simulation, refrigeration
systems, ventilation of road tunnels under normal and fire conditions.

NMF component model descriptions can be automatically translated into the format
of a number of simulation environments. Translators have been developed for
ESACAP, HVACSIM+, IDA, MS1, SPARK, and TRNSYS. Some of these have
computer algebra capability for automatic model processing.

This thesis consists of seven introductory chapters and seven separate papers. The
main design issues for IDA and NMF are listed and briefly discussed in the introduc-
tory sections. Among them are: algebraic solution techniques, field models, imple-
mentation form and languages, equation based model description languages, model-
ling language translatability, and access to foreign subroutine based models. The
papers give historical overview and insight into selected applications and topics.

Keywords: simulation, modelling, modeling, continuous systems, differential-
algebraic, DAE, solver, language, model description, building, energy, load, mul-
tizone, air flow



4

Preface
Before you lie several pages of words about simulation software and languages. The
text is one thing, the underlying implementations another. Together they represent a
total body of work of some twenty man-years that has been carried out by primarily
four people: Axel Bring, Lars Eriksson, Magnus Lindgren, and myself. The four of us
have had the opportunity to work intensively together for close to nine years towards
a common goal.

The implementations are a reality. All the software components and language con-
structs discussed in this thesis exist in commercial quality implementations, unless
specifically stated otherwise. They have been tested on real-scale problems by inde-
pendent users.

The modelling language, the Neutral Model Format (NMF), and translators to
TRNSYS, HVACSIM+, and IDA, are controlled by ASHRAE1. An ASHRAE
committee is responsible for approval of amendments to NMF.

Building simulation is an interdisciplinary subject, with ingredients from numerical
analysis, information technology, signal processing, as well as the building sciences.
This makes it a fascinating field of endless challenge, and of significant potential long
term rewards in terms of global energy savings.

As for any young cross-disciplinary subject, there has been a shortage of appropriate
scientific fora. The application oriented journals have, until recently, not really
accepted the full implications of the computer revolution. IBPSA2 has with its confer-
ence series provided a dedicated forum that we have truly enjoyed. Consequently,
most of the papers that are part of this thesis have been presented at IBPSA confer-
ences.

Solna, April 19, 1996

                                               
1 American Society for Heating, Refrigerating and Air-conditioning Engineers
2 International Building Performance Simulation Association



5

Contents

1. INTRODUCTION .......................................................................................................................8

1.1 BUILDING SIMULATION BOTTLENECKS..........................................................................................9
1.1.1 Technology Transfer............................................................................................................9
1.1.2 Access to the Right Tool for the Job...................................................................................10
1.1.3 Integration into Design Environment .................................................................................11
1.1.4 Validation..........................................................................................................................11

1.2 MODULAR VS. TRADITIONAL TOOLS............................................................................................12
1.3 MODULAR SIMULATION ENVIRONMENTS (MSES) ........................................................................13

1.3.1 User Roles and Tool Types.................................................................................................14
1.4 THE PROBLEMS ADDRESSED.......................................................................................................15

1.4.1 Primary Target Applications..............................................................................................16
1.4.1.1 Building Loads and Energy Calculation .....................................................................................16
1.4.1.2 Multizone Air Flow...................................................................................................................16
1.4.1.3 Coupled Thermal and Fluid Flow Problems...............................................................................17
1.4.1.4 Demand Controlled Ventilation.................................................................................................17

1.5 THESIS OUTLINE.........................................................................................................................17

2. ORGANIZATION, OBJECTIVES, AND INITIAL CONDITIONS .......................................18

2.1 ORGANIZATION, PROJECT BACKGROUND, AND AUTHOR’S ROLE...................................................18
2.2 OBJECTIVES OF THE IDA PROJECT...............................................................................................18
2.3 THESIS OBJECTIVES....................................................................................................................18
2.4 INITIAL CONDITIONS AND METHODOLOGY..................................................................................19

3. LITERATURE REVIEW..........................................................................................................20

3.1 TRNSYS...................................................................................................................................20
3.2 ESACAP...................................................................................................................................20
3.3 HVACSIM+..............................................................................................................................21
3.4 SANDYS..................................................................................................................................22
3.5 ALLAN.SIMULATION .................................................................................................................22
3.6 DYMOLA ....................................................................................................................................22
3.7 CLIM 2000...............................................................................................................................23
3.8 MS1 ..........................................................................................................................................23
3.9 ISE............................................................................................................................................23
3.10 SPARK....................................................................................................................................23
3.11 OMSIM.....................................................................................................................................24
3.12 SMILE ......................................................................................................................................24
3.13 THUVAC................................................................................................................................24
3.14 EKS ........................................................................................................................................25

4. RESULTS ..................................................................................................................................26

4.1 SIMULATION ENVIRONMENT DESIGN ISSUES................................................................................26
4.1.1 Problem categories............................................................................................................26

4.1.1.1 Differential-algebraic equations (DAE) .....................................................................................26
4.1.1.2 Algebraic Solution Techniques ..................................................................................................27
4.1.1.3 Partial Differential Equations ....................................................................................................29
4.1.1.4 Variable Timestep.....................................................................................................................30
4.1.1.5 Discrete Time Models ...............................................................................................................31
4.1.1.6 Delays.......................................................................................................................................31

4.1.2 Openness ...........................................................................................................................31
4.1.2.1 Model Transparency..................................................................................................................32
4.1.2.2 Model-Lab Design Tools ...........................................................................................................32
4.1.2.3 Access to Model Libraries .........................................................................................................34
4.1.2.4 Product Model Data Import .......................................................................................................34

4.1.3 Implementation Form.........................................................................................................34
4.1.3.1 Distributability..........................................................................................................................34
4.1.3.2 Portability .................................................................................................................................35
4.1.3.3 IDA Implementation Languages.................................................................................................36



6

4.2 MODELLING LANGUAGE DESIGN ISSUES..................................................................................... 38
4.2.1 Background and Objectives............................................................................................... 38
4.2.2 Syntactical Structure......................................................................................................... 40
4.2.3 Expressiveness .................................................................................................................. 41

4.2.3.1 Global Declarations .................................................................................................................. 41
4.2.3.2 Continuous Models ................................................................................................................... 42
4.2.3.3 Algorithmic Models .................................................................................................................. 44
4.2.3.4 Field Models............................................................................................................................. 44

4.2.4 Level of Standardization................................................................................................... 44
4.2.5 Introduction Threshold...................................................................................................... 45
4.2.6 Translatability and Openness............................................................................................ 45

4.2.6.1 Vector to Scalar Mapping.......................................................................................................... 46
4.2.6.2 Assigned States......................................................................................................................... 46
4.2.6.3 Event Signals ............................................................................................................................ 47
4.2.6.4 Model Linearization.................................................................................................................. 47
4.2.6.5 Foreign Functions and Subroutines............................................................................................ 48

4.2.7 Translator Development for Special Purpose Tools........................................................... 49
4.2.8 NMF Discussion................................................................................................................ 49

5. COMMENTS TO THE PAPERS ............................................................................................ 51

5.1 PAPER 1: MODSIM - A PROGRAM FOR DYNAMICAL MODELLING AND SIMULATION OF CONTINUOUS

SYSTEMS......................................................................................................................................... 51
5.2 PAPER 2: A NEUTRAL FORMAT FOR BUILDING SIMULATION MODELS........................................... 52
5.3 PAPER 3: IDA SOLVER - A TOOL FOR BUILDING AND ENERGY SYSTEMS SIMULATION ................ 52
5.4 PAPER 4: IDA MODELLER - A MAN-MODEL INTERFACE FOR BUILDING SIMULATION .................... 52
5.5 PAPER 5: MODELLING AIR FLOWS AND BUILDINGS WITH NMF AND IDA ..................................... 52
5.6 PAPER 6: NMF-BASED ASPECT MODELS IN STEP/EXPRESS FOR BUILDING AND PROCESS PLANT

SIMULATION .................................................................................................................................... 53
5.7 PAPER 7: FUTURE TRENDS OF THE NEUTRAL MODEL FORMAT (NMF).......................................... 53

6. DISCUSSION............................................................................................................................ 55

6.1 SUMMARY OF RELEVANT APPLICATION PROJECTS....................................................................... 55
6.1.1 Building Loads and Energy Calculation............................................................................ 55

6.1.1.1 Re-implementation of BRIS ...................................................................................................... 55
6.1.1.2 Preserving Monolithic Tools ..................................................................................................... 58

6.1.2 Multizone Air Flow ........................................................................................................... 60
6.1.3 Coupled Thermal and Fluid Flow Problems...................................................................... 62

6.1.3.1 Fire Studies at SINTEF............................................................................................................. 62
6.1.3.2 Ventilation and Fire Studies in Traffic Tunnels......................................................................... 63
6.1.3.3 Natural Ventilation Studies....................................................................................................... 63

6.1.4 Demand Controlled Ventilation......................................................................................... 63
6.2 REMAINING MSE PROBLEMS..................................................................................................... 64

6.2.1 Affordable Quality Implementations.................................................................................. 64
6.2.2 User Awareness and Training........................................................................................... 64
6.2.3 Efficiency on Large-Scale Problems.................................................................................. 64

7. SUMMARY AND CONCLUSIONS ........................................................................................ 65

7.1 THE IDA/NMF DESIGN PROFILE................................................................................................ 65
7.2 CONCLUSIONS........................................................................................................................... 66

7.2.1 Problem Review................................................................................................................ 66
7.2.2 Overall Conclusion ........................................................................................................... 68

7.3 FURTHER WORK........................................................................................................................ 69
7.3.1 IDA Application Development........................................................................................... 69
7.3.2 IDA Modeller.................................................................................................................... 69
7.3.3 IDA Solver ........................................................................................................................ 69
7.3.4 IDA NMF Translators ....................................................................................................... 69
7.3.5 General NMF Research .................................................................................................... 69



7

List of Papers

1. P. Sahlin, MODSIM - a Program for Dynamical Modeling and Simulation, Pro-
ceedings of the annual meeting of the Scandinavian Simulation Society, Espoo,
Finland, 1988

2. P. Sahlin, E.F.Sowell, A Neutral Format for Building Simulation Models, Pro-
ceedings of the IBPSA Building Simulation '89 conference, Vancouver, Canada,
1989

3. P. Sahlin, A.Bring, IDA Solver - A Tool for Building and Energy Systems Simula-
tion, Proceedings of the IBPSA Building Simulation ‘91 conference, Nice, France,
1991

4. A. Bring, P. Sahlin, Modeling Air Flows and Buildings with NMF and IDA,
Proceedings of the IBPSA Building Simulation '93 conference, Adelaide, Australia,
1993

5. P. Sahlin, IDA Modeller - A Man-Model Interface for Building Simulation,
Proceedings of the IBPSA Building Simulation '93 conference, Adelaide, Australia,
1993

6. P. Sahlin, C. Johansson, NMF-Based Aspect Models in STEP for Building and
Process Plant Simulation, Proceedings of the CIC W78 workshop on computer
integrated construction, VTT, Helsinki, Finland, 1994

7. P. Sahlin, A. Bring, K. Kolsaker, Future Trends of the Neutral Model Format
(NMF), Proceedings of the IBPSA Building Simulation '95 conference, Madison,
Wisconsin, 1995



8

1. Introduction
Building design involves a multitude of compromises. The quality of design decisions
is closely related to the accuracy with which the designer is able to predict the char-
acteristics of the future building. Ability to quickly provide quantitative measures
throughout the design process is therefore crucial. Building space and investment cost
are examples of rather obvious design parameters, others relate to the dynamical
performance of the building, such as energy consumption, indoor thermal climate, air
quality, light and sound levels. Dynamical computer simulation can provide an
efficient method for prediction of the latter group. For this reason, a large number of
building performance evaluation (BPE) tools have been developed. This thesis treats
the development of software infrastructure and special languages for rapid develop-
ment of BPE tools with desirable characteristics. Requirements for general purpose
simulation methods for BPE are developed and analyzed.

Repeatable physical experiments on buildings are often difficult to perform. Many
building systems are too bulky for laboratory measurements and long term measure-
ment on real buildings are either expensive, due to the cost of an unoccupied building,
or disturbed by building utilization. This makes computer based experimentation on
building models attractive.

The building industry is oriented towards one-of-a-kind production, with a low
relative investment in engineering. Coupled with the difficulty of in situ measure-
ments, this creates unfavorable conditions for innovation and performance feedback.
The process of natural refinement of engineering solutions is therefore slow. Ability to
experiment with new solutions in the design office by simulation is bound to improve
this situation, if the right tools are available.

Furthermore, since malfunctions in the delivered product are difficult to detect and
quantify, designs that do not perform correctly, even theoretically, are sometimes
realized. If design offices were obliged to demonstrate intended functionality on a
computer model prior to realization, many such problems could be avoided.

Only a small fraction of the potentially worthwhile simulation experiments in the
building life cycle are exploited today. The heterogeneity of the physical systems, the
building traditions, and the stages of the design procedure create a huge spectrum of
potential simulation situations. However, in spite of ample opportunities and strong
motivation, the process of introducing BPE simulation tools into industry is slow. In
this thesis, an attempt will be made at identifying some of the main limiting factors in
this process. A subset of these factors form the motivation for the development of the
IDA modular simulation environment, and for a suggested standard for expression of
building simulation models, the Neutral Model Format (NMF).

Although IDA and NMF have been developed primarily for the building industry, they
have wider applicability. Building simulation allows few simplifying assumptions. On
the contrary, the requirements posed by this discipline span a very large domain that is
sufficient also for many other applications.



9

In the introductory sections of this thesis, the main design issues for IDA and NMF
will be examined in some detail. This discussion provides a framework for the seven
separate papers, where the actual design is presented. An early overview of the IDA
system is provided in Paper 1. A separate report [Sahlin 1991], that is not part of this
thesis, also provides additional overview material. The NMF discussion in Section 4.2
assumes that the reader is familiar with the basic NMF concepts, and frequent refer-
ences are made to the NMF Handbook - an Introduction to the Neutral Model
Format [Sahlin 1996a], which should be read in parallel.

1.1 Building Simulation Bottlenecks
The identification of major problem areas in the application of BPE methods is hardly
a controversial issue. The problem is not so much to identify the problems adequately
but rather to provide solutions. Nevertheless, the route taken in the IDA project is to
a large extent based on our particular perception of the dominating bottlenecks.

1.1.1 Technology Transfer
Much of the scientific discussion about building performance simulation focuses on
mechanisms for technology transfer. Let us examine some details of the transfer
process using a model of an ideal situation, and discuss a common malfunction. The
main aspects of this ideal process for production of simulation results can be repre-
sented as in Figure 1-1.

mathematical
modelling

application
development

model
use

formally
described
models

ready made
applications

specifications

simulation
results

measurements

library models

researchers

software
engineers

consultants
• math
• physics
• signal processing
• validation
• experimentation

• software development
• customer support
• market awareness • other primary competence

specifications

specifications

Figure 1-1. An ideal process for production of simulation results

In the process, three distinct professions interact in order to create specified simula-
tion results. The process is driven by specifications from downstream actors, starting
with the client in need of simulation results (not in the figure).



10

Unfortunately this ideal situation rarely occurs in practice. One common malfunction
is in the relationship between researchers, doing the mathematical modelling, and
application developers. In fact, examples of working business relationships between
these groups are hard to find in practice. It seems as if the dominant mechanism of
technology transfer between these actors is that of researchers changing profession
and becoming instead software developers. Alternatively, researchers feebly try to
market simulation applications directly, without the assistance of a professional
software developer and vendor. Both methods have obvious disadvantages.

A practical problem is the form in which models are described when they are trans-
ferred from mathematical modellers to application developers. The dominating
method today is still regular research reports, where model equations are presented
and defended. Sometimes this description is accompanied by some implementation of
the model, as a stand alone program or as a set of subroutines. More often than not,
the software developer must re-implement the models in a more suitable form for the
final product. Although this is no insurmountable task, it is certainly a practical
obstacle that causes friction in the process, and it is a problem that can be dealt with
by standards such as NMF, as we will discuss in Section 4.2.

IDA is designed to be useful for all three actors in the simulation process, and by
providing a common framework, it is intended to enhance the overall productivity as
well as the quality of the products.

1.1.2 Access to the Right Tool for the Job
The total number of BPE tools that have been presented scientifically or commercially
is quite astonishing. It may seem as if there exists a tool for every conceivable design
evaluation situation. However, for a BPE engineer with an urgent problem at hand,
the number of practically available tools is normally quite low, often zero. A number
of practical restrictions create this situation:

• Information about the existence of a tool has not reached the engineer.

• A tool exists only in a “research implementation,” practically accessible only to the
developers and their immediate circle.

• A commercially supported appropriate tool exists, but is unavailable due to
distance, language, engineering culture, or computer platform.

• The tool supports a particular equipment product line, which is suboptimal for the
design at hand.

• The introduction time of the tool is too high for the given project.

• The tool itself is too expensive.

A consequence of this situation is that available tools are frequently used far beyond
their intended application regime, e.g., an office room model is applied to evaluate the
performance of a new solar collector concept. Another common scenario is that
intentionally “quick and dirty” spreadsheet models are incrementally improved in
several projects until substantial amounts of development time have been invested, but
the end result is still a limited tool that is practically useful only to its developers.



11

Some of the obstacles that prevent tools from reaching end users will surely vanish
with time, others are more fundamental. The heterogeneous nature of the different
building design problems that could be addressed with simulation will surely remain.
Therefore, general purpose simulation tools will be necessary. However, general
purpose tools will often be too time consuming and require too much expertise from
the user, to make special purpose tools superfluous. There is a fundamental contra-
diction between the user friendliness and the generality of a tool. A tool with a more
limited scope will always be easier to use, given the same general user interface
standard.

To cater for continually changing demands, continued development and alteration of
large numbers of special purpose tools is therefore unavoidable. To make this eco-
nomically feasible, the cost of application development will have to be cut far beyond
the lowest attainable cost of today. Furthermore, it must be possible to upgrade the
performance of an application gradually, both in terms of model capability and user
friendliness. Rough implementations must be available within “spreadsheet develop-
ment” times, and first versions of graphical user interfaces (GUI) must be generated
equally quickly, without sacrifice of the possibility of future gradual improvement.

The use of general purpose simulation methods for cost-effective development of end
user application tools is the main topic of this thesis.

1.1.3 Integration into Design Environment
When designers are asked what they think would best contribute to increase the use of
BPE tools, a common response is “to be able to transfer data directly from CAD”
[Wernstedt 1995]. The tedious process of entering the same geometrical data into an
array of tools, all requiring similar information, is immediately identified as a potential
area of automation. In spite of this, few integrated systems are in operation. The
problem of providing solutions with acceptable generality in this area is significant.
Contributions have been made by several substantial recent projects, among them the
Finnish RATAS project [Björk 1995] and the large EC funded COMBINE projects
[Augenbroe 1993, 1995] (http://erg.ucd.ie/combine.html).

COMBINE and related projects have focused on the definition of a general data
model for buildings, a so called product model (PM). Interfaces have been developed
to a range of CAD and BPE tools. The development of each such interface requires a
significant effort, and it is important to develop methods to automate this process.
Systematic mapping between different product models of the same object (aspect
models) is a crucial technique that has been studied by, e.g., Amor [Amor 1995]. If
the production of tools for specific problem types is streamlined as discussed in the
previous section, a need to quickly develop corresponding PM interfaces will follow.

The work on IDA and NMF has not been primarily focused on CAD integration.
However, some initial work in this field is reported in Paper 6 of this thesis.

1.1.4 Validation
Blind validation tests of BPE software against measured data generally exhibit
discouraging results [IEA B&CS Annex 1 1981], [Lomas 1994]. It is not uncommon



12

that independent testers using different tools on the same problem differ by a factor
two on some estimated quantities. This situation is unacceptable. However, a positive
trend can be discerned in recent studies. More systematic methods for model screen-
ing have been developed [Judkoff 1994]. Many of the problems in this area stem from
the monolithic structure of present tools, and from lack of standardization of input
data.

The present work does not deal directly with the validation issue. However, the
proposed methods can be expected to have positive effects on validity due to the
following circumstances:

• Simulation tools that have been implemented with the proposed techniques are
accessible in their smallest details. Individual parts of a model can be validated
independently. Any variable in a model can be measured in validation work, not just
the variables that are presented as output in the finished application.
 

• Modelling errors can be completely separated from solution errors. In the scope of
a validation study, model equations can be resolved with arbitrarily high accuracy.
Solution errors are then effectively eliminated at the expense of execution time.
 

• The proposed methods deal mainly with the form of BPE tool implementation, not
the content. For most applications, already existing tools can be re-implemented in the
new form. When a tool is selected for re-implementation, validation status is a key
selection criterion. It is natural and often quite easy to make sure that the new tool is
able to perfectly reproduce results from the template. After this step, it is frequently
possible to identify weaknesses in the model of the template tool, and improve the
modelling further. In many existing tools, limited solution techniques and computer
resources, at the time of the original implementation, have lead to approximations that
are no longer necessary.

1.2 Modular vs. Traditional Tools
In 1985, a group of leading building simulation specialists gathered in Berkeley,
California, to discuss future directions [Clarke 1985]. There was a consensus that
most of the tools, that had been developed until then, were much to rigid in their
present structure to be able to accommodate the improvements and flexibility that
would be called for in the future. Each added feature to the existing tools required a
larger implementation effort than the previous one. The complexity of input data was
already overwhelming to most potential users. Basic methodological improvements,
such as a complete change in solution strategy, were close to impossible to carry out
since most of the program structure would be affected. In response to this meeting,
some significant projects were initiated to develop a modular architecture for BPE
tools that would give the desired flexibility, maintainability, and that would be possible
to upgrade in all respects. In the US, the SPANK project was started (now SPARK)
[Sowell 1986]. In the UK, the Energy Kernel System was proposed [Clarke 1986],
and in France, the ZOOM project [Bonin 1989] was the main vehicle of renewal.

Eleven years have passed. The tools that were deemed inadequate at the Berkeley
meeting are still completely dominant, although today often wrapped in modern GUIs.
The Berkeley analysis still applies. Nothing has happened that makes the monolithic



13

tools manageable in the long run. The difficulties with the practical implementation of
good modular tools were obviously underestimated. The industrial demand for tools
with new and more flexible architecture has, at the same time, been weak. The drive
to incorporate new GUI (Graphical User Interface) technology seems to have ab-
sorbed nearly all industrial development ambition.

A workshop with a number of invited experts was organized jointly by the US
departments of energy and defense in the summer of 1995, again to discuss the future
of the field. A summary from the workshop [Crawley 1995] confirms that a majority
of researchers still have high expectations on modular methods, in addition to tool
integration by way of building product models. No views were expressed that support
a long life expectancy for the traditional tools.

Many different interpretations of the term modular methods exist, and others, such as
object oriented or modular simulation environments are often used with roughly the
same meaning. Is for example a “traditional” building simulation program that has
been implemented in C++ modular? Is a separation into loads, systems, pre- and post-
processing, sufficient for a program to be called modular? Most developers call their
product modular and this leads to misunderstandings in the scientific debate. For the
purpose of this thesis, we have chosen to use the term modular simulation environ-
ments, the meaning of which we will attempt to define next with appropriate accu-
racy.

1.3 Modular Simulation Environments (MSEs)
First, MSEs have nothing to do with object oriented programming (OOP). MSEs may
or may not be implemented with OOP tools, recent developments generally are.

Two criteria that a modular simulation environment must fulfill are:

1. Models are treated as data. The key characteristic of an MSE is that the mathe-
matical models are exchangeable. The environment allows radically different mod-
els to be used for the same physical device.

2. Separation of software modules for modelling and solution. The software archi-
tecture allows exchange of solvers. Although only a few MSEs really offer a selec-
tion of different solvers, they are open in this respect.

A separate modelling tool is often used for model formulation. This tool generates a
system model, generally expressed in a modelling language. The model is then treated
by a solver and/or other model processing tools. Some MSEs rely on regular pro-
gramming languages as part of their model description. For these, component models
are typically described as subroutines with prescribed structure, while interconnection
of pre-programmed component models into system models is described with a
dedicated language. Other environments have complete modelling languages, which
describe component behavior as well as system structure.

Physical systems that are simulated in MSEs are normally modular in nature, i.e., they
naturally decompose into subsystems. Frequently, identical subsystems are repeated a
number of times in a model, a fact that is taken advantage of in many tools. Further-



14

more, the systems should have a basically continuous behavior, meaning that equa-
tions used to describe them, as well as forcing functions, will have a limited number of
discontinuities. Purely event driven systems are excluded. Discrete time submodels
may be encompassed by some MSEs.

If characterized by equations, the physical systems under consideration will require
both algebraic and differential equations. Differential equations can be either ordinary
(ODE) or partial (PDE), although current tools require that PDEs are explicitly
discretized in space and thus turned into ODEs. Note that, in contrast to many widely
used commercial tools, the simulation environments we are concerned with here are
not limited to ODEs only. They allow a free mixture of algebraic and ordinary differ-
ential equations generally referred to as differential-algebraic systems of equations
(DAE).

Furthermore, the simulation tools under discussion are rarely used for applications
where a strict formalism for generating governing equations exists. In, e.g., electrical
circuit analysis, multibody mechanics, or structural strength analysis special purpose
systems may be more advantageous.

1.3.1 User Roles and Tool Types
Much of the discussion of this thesis is based on a categorization of user roles and
tool types. These issues are discussed from the IDA perspective already in Papers 1
(1988) and 4 (1993). Since then our view has matured, and we will devote some
space here for additional discussion.

Most of the tools that qualify as MSEs are exclusively intended for quite sophisticated
users, who are well versed in mathematical modelling, advanced use of computers,
and have some grip on numerical methods. This type of tool is called a model-lab
MSE in the future discussion. Additional discussion of this term can be found in Paper
4. The corresponding user will be called a model-lab user3. Typically, the researchers
of Figure 1-1 are of this category. However, a key point of this work is that model-
lab tools are not directly suited for building designers lacking special simulation
expertise, who use simulation as one of several methods for design evaluation.

This group of users, that run ready-made BPE tools, will be categorized as end users,
with the further distinction advanced4 and designer5, to emphasize the latter cate-
gory’s main area of competence. Both these categories have the role of consultants in
Figure 1-1. An advanced end user will typically be able to build working system
models out of ready-made component models, i.e., interconnect models into a suitable
structure, give appropriate parameters, and carry out a simulation exercise. This type
of tool will be called a model-lab design tool.

The designer end user will work with automatically generated or available template
system models. He will normally interact with a tailored GUI that, in principle, could
use any type of simulation engine, i.e., monolithic as well as MSE based.

                                               
3 In the nomenclature of Papers 1 and 4 this was a component maker.
4 Roughly system maker in Papers 1 and 4.
5 Roughly black box user in Paper 1and end user in Paper 4.



15

Another role that will be needed is that of the application developer, the software
engineer of Figure 1-1. An application developer prepares the ready-made tools that
are required by end users. GUI design and implementation is a main task. The raw
mathematical models that are packaged by the application developer are typically
formulated by others. The developed GUI assists end users in the formulation of
solvable simulation problems based on design parameters of the modelled object, i.e.,
a task that model-lab users normally carry out for themselves.

The given categorization is exaggerated here for the purpose of clarity. In real life,
roles will be mixed and this is a desirable process. Users will hopefully be encouraged
to traverse boundaries, given the possibility to do so with the new methods.

model-
lab user

application
developer

advanced
end user

designer
end user

model-lab MSE with app-
lication generation support

medium high low low

model-lab MSE high n.a. medium low

model-lab design tool high n.a. high medium

simplified design tool high n.a. high high

Table 1-1. User types vs. tool types, including level of suitability

1.4 The Problems Addressed
After the general discussion of building simulation bottlenecks and remedies, we will
now narrow the perspective to more manageable proportions. As we have already
mentioned, the present work is primarily focused on the first two problem areas
Technology Transfer and Access to the Right Tool for the Job. The following general
problems are addressed:

1. The degree of model reuse in the field is low. Available mathematical models
are generally packaged in a form that is unsuitable for direct reuse in diverse
settings. Researchers produce validated and documented mathematical models,
but these are then presented in a form which is either too general, i.e., written
equations in a report, or too specific, i.e., intertwined with a solution algo-
rithm in a special implementation. The same problem applies to model reuse
between different projects that are carried out within the same group, but with
different simulation tools.

2. With available techniques, the development cost of special purpose application
tools is too high. This in turn prevents exploitation of many potential simula-
tion problems, since the market for each individual special purpose tool is
small. The collective effect is that simulation is poorly utilized as a general
method.

3. Special purpose tools that are developed with available techniques are inade-
quate for the end user in the following respects:



16

a) They offer no practical way for a user to adapt the tool, in an un-
planned way, to suit the problem at hand, i.e., the ability to re-program
is exclusive to the developers.

b) The mathematical models are documented separately, creating a double
source problem. The user is often in doubt regarding the correspon-
dence between the documentation and the implemented model.

c) They are generally too inhomogeneous in terms of user interaction
principles to allow a user quick transitions between different tools. The
required common principles shared by, e.g., two good Windows appli-
cations, are too superficial to make it possible to have a large number
of different applications simultaneously active (mentally).

d) Only the subset of model quantities that have been selected by the de-
velopers is available for study. If for example wall temperatures are
interesting, they may not be possible to present.

4. Available MSEs are inadequate, both regarding the encompassed problem
types, and the possibility to distribute attractive special purpose applications.

1.4.1 Primary Target Applications
The solutions we will propose to the discussed problems are general in nature, i.e.,
they are not limited to a certain range of target applications. However, some building
simulation applications are more important than others in terms of economical impact
and applicability of simulation methods. To facilitate quantifiable measures of success,
a list of primary target applications have been selected. These applications are briefly
presented in the next few sections, along with some motivation for their selection.

1.4.1.1 Building Loads and Energy Calculation
A well motivated concern among building simulation researchers regards the applica-
bility of general purpose MSEs to the thermal modelling of building fabric. Heat
transfer and storage in the building structure is naturally an important process, and an
implementation must be reasonably efficient in this respect in order to be attractive. It
is not immediately obvious that a general purpose simulation tool can show adequate
performance on these important special problems.

In addition to the heat equation in one dimension, non linear heat exchange due to
convection and radiation must be resolved.

1.4.1.2 Multizone Air Flow
A less established group of simulation problems concern the prediction of pressure
levels and air flows between ventilation zones, in ventilation ductwork, and through
openings in the building envelope. Existing special purpose tools for this type of
problem include Movecomp [Herrlin 1992], CONTAM93 [Walton 1994], and
COMIS [Feustel 1990]. The basic equations for multizone air flow are given in
Paper 5.

Although the available tools for this type of problem have yet to penetrate into
industrial practice, the ability to solve the underlying equations are of significant
importance. The same basic equations apply for any fluid distribution network with



17

turbulent flow, e.g., ventilation ductwork, radiator or sprinkler systems. In the
multizone air flow case, equation coefficients vary with several orders of magnitude6.
The overall structure of the equations is also unfavorable, with multiple nested flow
circuits. Both these factors make the multizone air flow application more demanding
than many other flow circuit problems. Therefore it represents a suitable test applica-
tion.

1.4.1.3 Coupled Thermal and Fluid Flow Problems
A major weakness of most existing tools in both the previous categories is that they
do not allow mixed problems. The thermal tools require air flows as input, and the air
flow tools similarly require given zone temperatures. This is an artificial limitation
purely due to the technical difficulty of solving the combined coupled problem. In
some applications, e.g., studies of the effect of individual temperature setpoints in
zones connected by an open door, the coupled problem must be addressed.

1.4.1.4 Demand Controlled Ventilation
An important mechanism that is lacking in present monolithic tools is the ability to
rapidly compose an arbitrary system model and study a certain aspect of it, e.g., the
performance of a control algorithm. An appropriate model must be constructed, from
scratch or from existing library material. The user must also formulate suitable
simulation experiments. The very nature of this task is general purpose, and we will
therefore select a sample problem that exhibits some of the general difficulties that
must be surmounted, e.g., hysteresis and discontinuities.

The problem we have selected regards demand controlled ventilation of a single zone,
by adjustment of the fresh air fraction in a mixing box. The problem has been studied
by Emmerich and co-workers [Emmerich 1994].

1.5 Thesis Outline
The background and objectives of this work are presented in the next main section. In
Section 3, a review of related work is done. The main design issues of IDA Solver
and Modeller are presented in Section 4.1. A similar discussion for NMF is carried
out thereafter in the Section 4.2. In Section 5, some comments are made to the seven
included separate papers. This is followed by a review of application projects and a
general discussion of MSE problems in Section 6. The thesis is concluded and sum-
marized in Section 7.

Depending on previous familiarity with the field, it might be optimal to start with
reading the first two papers, to get some overview and introduction, and then return
to the main text. Papers 3 through 5 relate directly to the discussion of IDA in Section
4.1, and should be read in parallel.

The reader who is new to NMF is advised to read the NMF Handbook before em-
barking upon the NMF design discussion of Section 4.2. The last two papers deal
with future NMF development, and can be read separately, after Section 4.2. Paper 6
presents our initial work on the relationship between NMF and product models. In
Paper 7, some proposed new NMF constructions are presented.

                                               
6 Due to the difference in flow resistance between, e.g., an open doorway and a microscopic crack.



18

2. Organization, Objectives, and Initial Conditions

2.1 Organization, Project Background, and Author’s Role
The IDA project commenced in 1987, as a cooperative effort between the Swedish
Institute of Applied Mathematics (ITM) and the Division of Building Services Engi-
neering at the Royal Institute of Technology (KTH). The author was project leader at
ITM and Axel Bring was responsible for the application side of the project at KTH.

In a previous series of contract projects for the Norwegian oil company Statoil, a
novel numerical technique for modular simulation had been developed at ITM [Sö-
derlind 1984, 1985a, 1985b, 1986]. The Statoil application concerned simulation of
oil-gas separation plants. The new method featured pre-compiled component models
without the restriction of input-output oriented modelling (cf. Paper 1). The author
was aware of the on-going discussion about modular methods in building simulation
and initiated a joint research proposal with KTH. A number of subsequent proposals
have followed, but the basic organization has remained roughly the same up until
1995, when an industrial consortium was formed around IDA.

The main responsibility of the author has been to compose an adequate set of capa-
bilities for the building simulation application. Implementation has to a large extent
been carried out by Axel Bring and Lars Eriksson for IDA Solver, and Magnus
Lindgren and the author for IDA Modeller. Some application projects have been
carried out by the IDA team, others by independent developers. The author is the
main designer of NMF, but many others have also contributed.

2.2 Objectives of the IDA Project
The ambition in the first phase of the project was to create a prototype general
purpose MSE, based on the ITM numerical technique, and with a model-lab GUI. The
funding came from ITM and the Swedish Council for Building Research. Building
simulation was seen as a good reference application, but the aim at that stage did not
include the creation of easy-to-use special purpose tools for the designer end user.

In subsequent funding requests, the objectives have shifted towards a more pro-
nounced building simulation orientation. The importance, for this field, of ready made
special purpose applications has been realized. The original pronounced “technology
push” has gradually been replaced by a demand driven approach, where the simulation
needs of the building industry have been the guidance. The problem formulation of
Section 1.4 has been the target for the last few years.

2.3 Thesis Objectives
For the purpose of this thesis it is necessary to define a more closely focused set of
objectives, which can be clearly associated with the author’s role in the overall
project.

The goals of this work are the following:



19

1. The key points of the IDA specification will be presented and motivated with
respect to the problem formulation of Section 1.4.

2. The same will be done for the NMF design.

3. The appropriateness of both IDA and NMF will be evaluated with respect to
the primary target applications, as presented in Section 1.4.1, with particular
emphasis on

a) the efficiency of the application development process, and

b) the general usability of the developed applications.

4. The main result will be a conclusion regarding the applicability of MSE based
technology as a replacement for traditional design.

2.4 Initial Conditions and Methodology
As mentioned, some design decisions for IDA had already been made at the onset of
the project. The appropriateness of these will be evaluated along with the full imple-
mentation, but a complete redesign with respect to these aspects have never been
considered. First, the basic architecture of the existing numerical method and proto-
type solver implementation from the Statoil project were adopted as they were.
Secondly, the use of Common Lisp for the GUI implementation was also a decision
that had been taken at ITM prior to the IDA project. To investigate the applicability
of Lisp for this type of application was a goal of the original IDA project.

Some basic methodological principles for the IDA project have been:

1. Learning by doing. We believe that the appropriateness of MSE technology cannot
be determined without full-scale implementations that are put to test on real prob-
lems by independent users.

2. All of the key software components involved must be in complete control by the
development team. The use of available fixed software components, for key parts
of the system, will infringe on the possibilities of creating an optimal overall sys-
tem. Only very stable and commonly accepted tools, such as compilers, GUI pack-
ages, numerical library routines etc., are exempted from this principle.

This holistic approach obviously puts limits on the amount of effort that can be
devoted to each individual item. Ad hoc solutions must be applied without full
scientific rigor to allow the creation of a working whole in the limited scope of the
project. However, if the end result is found to be an adequate solution to the problem,
all the individual parts are also adequate in their given roles.



20

3. Literature Review
In this section, an initial overview of related projects and tools will be given. A
number of available and emerging MSEs are discussed below, in a loosely defined
order of maturity.

3.1 TRNSYS
TRNSYS was developed during the early seventies at the Solar Energy Lab at the
University of Wisconsin [Klein 1976] (http://www.engr.wisc.edu/centers/sel/trnsys
/index.html). The primary application then was solar energy systems. It was one of the
first modular simulation solvers for DAEs and it is distributed at low cost, bundled
with some related tools. Several compatible modelling tools have been developed
independently, e.g., PRESIM and IISiBat. An important feature of TRNSYS is that
component models are pre-compiled. This means that end users may compose system
models with fixed components without access to a compiler.

The design of TRNSYS commenced in 1972, i.e., well before many of the monolithic
programs. In hindsight, the conception of the simple, yet adequate, program structure
is truly commendable. TRNSYS version 14.1 was released in mid 1994 and featured a
considerable leap in the offered numerical methods. The traditional successive substi-
tution sequential solver was complemented with an implicit solver, however still
operating with a fixed timestep. A bold decision was to introduce a set of non-
backwards compatible changes to the prescribed structure of the TYPE subroutines,
making it necessary to manually update the entire model library of each user. With the
implicit solver came also the possibility to “back solve,” i.e., to connect model
variables IN to IN and OUT to OUT. Unfortunately, many of the available libraries
remain in the old format.

A fundamental limitation with TRNSYS is the fixed timestep. A simultaneous solver
is required to provide reasonable robustness for many problem types, but to attain
acceptable efficiency with such a solver, the possibility to take long timesteps must be
utilized when little is going on in the simulated system. Converting the TRNSYS
community to variable timestep would be rather difficult, since such a large number of
existing models are based on the fixed timestep assumption.

The TRNSYS solver has also been used for development of end user applications.
CASSIS [Rongere 1992b] and CSTBât [Escudié 1994] are examples of rather
complex such applications. It is also common to use the TRNSED tool to provide end
users with tailored input files, some parameters of which can be altered by the end
user, but not the file structure.

3.2 ESACAP
ESACAP is an electrical circuit simulator which has been generalized into a full DAE
solver [Stangerup 1988, 1991a, 1991b]. The development of the ESACAP language
and solver was initiated in the late seventies at ElektronikCentralen in Denmark. Two
prototype NMF translators have been developed [Pelletret 1994a], [Lorenz 1994a].
ESACAP is now commercially available from STANSIM, Denmark.



21

3.3 HVACSIM+
HVACSIM+ [Clarke 1985] [Park 1985] is a general MSE for building simulation with
similar characteristics as TRNSYS in terms of model format and structure, but with
more recent numerical techniques than in the original TRNSYS, e.g., a simultaneous
algebraic solver (SNSQ), variable timestep, and input event detection. Component
models are precompiled and input-output oriented. It was developed by the National
Institute of Standards and Technology (NIST) in Maryland and released in the mid
eighties on a public domain basis. HVACSIM+ is delivered with a rather comprehen-
sive library of building simulation models. Unfortunately, the support level is currently
very low.

HVACSIM+ has an interesting structure with superblocks, i.e., modules that are
solved in sequence. Each superblock has a separate timestep. The idea is that closely
coupled subsystems with a common timestep requirement are to be collected into a
superblock. Typically the building model is put into one superblock, the control
system into another. Each superblock is divided into a number of blocks, each of
which is solved with a full matrix technique.

Another feature is variable freezing. Variables that have remained constant for some
time are simply removed from the system of equations until some condition is fulfilled.

The chosen design puts the burden of partitioning the problem into a suitable structure
on the user. A fundamental problem is that tightly coupled subsystems often are
distributed throughout the physical structure. In a mixed flow and thermal problem,
for example, the flow problem may in reality be decoupled from the thermal problem
(no buoyancy effect), but both flow and thermal equations exist in virtually every unit,
i.e., an efficient decoupling must be able to cross unit boundaries.

HVACSIM+ is equipped with a primitive text based interactive modelling tool,
HVACGEN. The file produced by HVACGEN is difficult to set up manually (too
cryptic) and a normal user is therefore left with the tedious exercise of running the
interactive tool. This is an unnecessary limitation. With a slightly more legible input
file that could be written without HVACGEN, the overall program would be more
useful. Furthermore, utilizing the block, superblock and freeze structure effectively to
save execution time is a genuinely difficult and (man-) time consuming task. A good
modelling tool could be a very useful help with this.

HVACGEN prescribes a limited number of variable types, such as temperature,
massflow, pressure etc. with fixed units. Fortunately, an ‘other’ category also exists.
This ad hoc selection of certain variable choices is another feature which limits the
applicability of the system in an unnecessary way.

In conclusion, HVACSIM+ is a tool that has good potential to become useful.
Unfortunately, little or no development has been done since the original release, and
without continuous support the program is of limited value to most potential users.



22

3.4 SANDYS
SANDYS is a general DAE solver and modelling language developed by ASEA,
Sweden, in the early eighties. It is commercially available from ABB Corporate
Research [Ohlsson 1991].

SANDYS features a comprehensive range of variable timestep integration methods,
including explicit methods. Both the language and the solver has good facilities for
description and simulation of multiple mode systems with complex logic and internal
events. The solver is equation based, and requires an integrated Fortran compiler.

The SANDYS system has, to the best of our knowledge, not been applied to building
simulation.

3.5 ALLAN.Simulation
ALLAN.Simulation is a graphical modeller and solver combination developed in the
mid eighties by Gaz de France and CISI Engineering. It is commercially available,
since a few years, from the developers [Jeandel 1993].

ALLAN relies on the NEPTUNIX solver [Nakhle 1982], which is a commercial DAE
solver that currently runs on a limited number of machines. The graphical front end
has a clear model-lab orientation.

ALLAN has been widely used for building simulation applications, including thermal
modelling of the building fabric. The project has a pronounced objective of con-
structing well validated and documented model libraries. A new language, ULM
[Jeandel 1994a, 1994b], for this purpose has been developed. ALLAN is an important
point of reference in the discussion of the applicability of MSE techniques to building
simulation.

3.6 Dymola
Dymola is a commercial modelling tool with symbolic algebra capabilities and inter-
faces to several solvers, available from Dynasim, Lund, Sweden [Elmqvist 1993]
(http://www.dynasim.se/).

The Dymola language [Elmqvist 1978], was the first modelling language that was
based on declaration of differential-algebraic equations. After some years without
development, a number of code generators for industry standard ODE based solvers
were developed in the early nineties. These generators require that the translated
model can be converted into ODE form, which is not always possible [Mattsson
1986]. Today, Dynasim markets also a DAE solver Dymosim, which is a DASSL7

derivative.

Dymola is further discussed in Section 4.1.1.1. It has been applied to a range of
applications, but to the best of our knowledge, not to building simulation.

                                               
7 DASSL is a standard numerical library Fortran routine (SLATEC library) for solution of DAEs,
that are supplied in a user defined subroutine. It was originally developed by Linda Petzold [Petzold
1982]. Several derivatives exist.



23

3.7 CLIM 2000
CLIM 2000, a graphical modelling tool for building applications, has been developed
by Electricité de France for internal use [Bonneau 1993].

CLIM 2000 has recently changed to the ESACAP solver. It is equipped with a
comprehensive model library, including advanced thermal building models that have
been validated in the scope of international comparative projects [Lomas 1994].
Special library documentation methods have been developed [Rongere 1992a], but the
source code for component models are stored in the native language of the solver.

Although not available to the general public, CLIM 2000 is an important project from
a scientific point of view. To the best of our knowledge, it represents the largest effort
to create an MSE for building applications.

3.8 MS1
MS1 is a graphical multi input language modeller with interfaces to several solvers by
Lorenz Simulation, Liege, Belgium in cooperation with Electricité de France [Lorenz
1991, 1994]. MS1 is commercially available from Lorenz Simulation.

MS1 models can be described with Bond Graphs, Linear Graphs, and Block Diagrams
[Lorenz 1987]. Model descriptions are converted to a so called pivot language, that is
based on NMF. Solver code is then automatically generated using symbolic algebra
techniques. Currently supported solvers include ESACAP and a range of ODE based
solvers.

MS1 has, to the best of our knowledge, not been extensively applied to building
simulation.

3.9 ISE
ISE is a graphical programmable front end that can be used with several building
simulation engines such as TRNSYS and COMIS [Pelletret 1995]. A TRNSYS
application, IISiBat, is available from the developers at CSTB, France.

Object oriented data models are tailored for the input files of the target environments.
These files can then be constructed interactively by end users using a hierarchical
structure with graphical objects for each modelled component. A system is available
for well structured documentation of component models. This documentation will in
future versions be complemented by NMF model descriptions. ISE is currently
implemented in ILOG Lisp.

3.10 SPARK
SPARK is a DAE solver under development at Lawrence Berkeley Laboratory,
California [Sowell 1986] [Buhl 1989, 1993]. SPARK is intended to be a modular
complement to the widely used monolithic DOE-2 building energy simulation tool. A
library of native models for building secondary mechanical systems is available, as is a
prototype NMF translator [Nataf 1995]. A graphical model editor is also under
development.



24

SPARK is to a large extent based on a general algorithm for sparsity utilization
[Sowell 1984]. A similar algorithm has also been implemented in IDA, and has
performed well on some large problems. A fundamental problem with any advanced
sparsity utilization algorithm lies in the very fact that it makes assumptions about the
system structure. Many real problems will change structure during the integration
process, e.g., when a flow-path reverses direction or due to some controller action. If
the algorithm is robust enough to deal with all such problems, it may become ineffi-
cient. There is a fundamental contradiction between efficiency and robustness that
makes it necessary to have access to a range of sparsity utilization levels, especially
during model development.

3.11 OmSim
OmSim is a graphical modelling tool with accompanying language, Omola, under
development at the Dept. of Automatic Control at the Lund Institute of Technology,
Sweden [Anderson 1990, 1994, Mattsson 1992] (http://control.lth.se/~cace/). OmSim
is integrated with the DASSL derivative DASRT, for solution of DAEs with discrete
events.

Omola is a later descendant of Dymola, which originates from the same department.
Omola offers an object oriented structure for construction of large scale DAE-based
model libraries. In comparison with NMF, Omola has a less pronounced orientation
towards model translatability to a range of target environments.

OmSim has a clear model-lab orientation, targeting primarily the sophisticated control
engineer. It has, to the best of our knowledge, not been applied to building simulation
problems.

3.12 Smile
Smile is a general purpose differential-algebraic modelling and simulation environ-
ment, primarily for energy related problems. Modelling language, model library, and
related software are under development at the Technical University of Berlin [Jochum
1994, 1995] (http: //www.cs.tu-berlin.de/~smile/synopsis.html). Smile features a
selection of dedicated solvers with implicit as well as explicit integration methods.
The Smile language is rooted in Objective C. Model descriptions are partly interpreted
at runtime and partly translated to C.

The SMILE project is a cooperative project between computer scientists, numerical
analysts, and application experts. Smile has been applied to a range of solar and
district heating applications.

3.13 THUVAC
THUVAC is a graphical modelling tool and solver for simulation of HVAC related
modular systems. It is under development at the Dept. of Thermal Energy, Tsinghua
Univ., Beijing, China [Yi Jiang 1994].

THUVAC addresses a more limited problem domain, HVAC system modelling.
However, it features a dedicated model language and has a clear vision of the type of
end user problem that it addresses. Unfortunately, successful end user tools must
generally be specialized for a certain culture. In the case of THUVAC this may well



25

be a Chinese building design culture that is bound to be different from most western
design cultures.

3.14 EKS
The Energy Kernel System, EKS, is a C++ toolkit for development of energy related
simulation design tools. It is under development by among others the Univ. of Strath-
clyde, Scotland [Clarke 1986] [Charlesworth 1991] [Clarke 1993].

EKS has a clear orientation towards efficient production of tailored end user design
tools. Drawing heavily on OOP techniques, EKS attempts to automate the procedure
of coding BPE tools. Existing BPE tools and methods are re-implemented according
to EKS principles and the result is structured into a library of objects. Objects are then
mixed and matched to form BPE tools with desired characteristics.

Although general purpose solvers are an integral part of the concept, EKS bears little
resemblance to other MSE projects. Unfortunately, the present rate of development is
low.



26

4. Results

4.1 Simulation Environment Design Issues
A well balanced list of capabilities is a prerequisite for a MSE to have a future. In this
section, we will present the IDA-version of this list. Some topics, like specific re-
quirements for the solver, are treated in the accompanying papers, and will not be
thoroughly discussed here. A complete summary of the main design issues is located
in Section 7.1.

4.1.1 Problem categories
The list of targeted problem types lies naturally at the heart of the specification. Most
of the discussion of problem types is also presented in Paper 3, IDA Solver - A Tool
for Building and Energy Systems Simulation, which was presented in 1991. This text
repeats some of the main points of that paper, for the sake of completeness. The ideas
should also have matured to some extent since 1991.

The presentation will be structured with respect to required capabilities of the simula-
tion environment. Features are motivated with references to typical building simula-
tion problems.

4.1.1.1 Differential-algebraic equations (DAE)
DAE capability was included in the MSE definition in Section 1.3, but some addi-
tional motivation may be appropriate, especially since the issue is so often brought to
question.

Current commercial continuous simulation systems are still strongly influenced by
pioneer numerical techniques for solution of systems of ordinary differential equations
(ODE). The CSSL language [Augustin 1967] defined in the late sixties is the base of
leading commercial general purpose simulation tools such as ACSL. Modern com-
petitors, such as SIMULINK, VISIM and STELLA, are also limited to ODE-
equivalent system descriptions, i.e., no closed loops of algebraic relationships8 are
allowed. They have, nevertheless, managed to capture significant market shares,
mainly due to early and skillful exploitation of GUI techniques.

Driven by industrial needs to model mixed static and dynamic systems with DAEs, a
few application independent tools with this extended scope began to emerge in the
late seventies and early eighties. NEPTUNIX and SANDYS are some examples.
SPEEDUP [Perkins 1982] is a (chemical) process plant simulation tool in this cate-
gory. TRNSYS (first version 1975) and HVACSIM+ are early counterparts in the
building simulation field. A notable fact is that special purpose tools for mixed static
and dynamic systems have existed since the early sixties. Widely used electrical circuit

                                               
8 Many physical systems contain such loops, e.g., an electrical network without capacitors, a
pressure-flow (pipe or duct) network with incompressible fluids. The most common trick to go
around the problem is to manually introduce artificial dynamics. The main drawback of this
approach, aside from lack of generality, is that it forces the solution algorithm to resolve timescales
that are irrelevant to the physics of the problem and that therefore result in an unacceptable compu-
tation effort.



27

simulation tools, such as SPICE , and building simulators, such as BRIS [Brown
1962], further support the industrial relevance of mixed static and dynamic simulation
capability.

A fundamental problem with DAEs is that they - in certain seemingly straightforward
situations - are very hard to solve numerically. They are then said to have high index.
No mathematical definition of index will be given here (several alternative definitions
exist, see e.g., [Brenan 1989]). Instead some sample problems that lead to high index
will be narrated.

1. The problem of calculating the path in space of a particle with mass, given the
forces, is straightforward. However, if instead the path is given and the solver is
asked to calculate the forces that gave rise to this path, the problem has high index,
and many DAE solvers will have great difficulty with it.

2. Calculating the behavior of a thermal system with two masses and a conductance
between them is easy, given the necessary source terms and boundary conditions.
But if the conductance is allowed to approach infinity, and the two temperatures
become identical, the problem becomes index two.

Although seemingly simple to deal with (using paper and pencil), high index problems
have been an important topic for research in numerical methods for several years. In
many applications, such as rigid body mechanics, they are more the rule than the
exception, and much of the competition between simulation systems deals with ability
to handle these problems.

However, a very fortunate effect of using a formal language for model description is
that equations can be manipulated symbolically, and this is precisely what is needed to
deal with high index DAE:s. If the expression for the particle path is differentiated
twice, problem 1 is solved. Similarly, identifying the two temperatures as one avoids
the difficulty in problem 2. The Dymola system has in this way been successful on
difficult problems in rigid body mechanics [Otter 1993].

Fortunately, high index is rare in thermal and HVAC problems. During the course of
the IDA project, high index problems have occurred only a few times. They have not
prevented progress in any way and for this reason little effort has been devoted to the
topic. Presently, IDA is likely to have the same difficulty with these problems as any
other numerical DAE environment. However, the present generation of NMF trans-
lators [Grozman 1996] has powerful symbolic processing capability. Symbolic
treatment of high index problems is therefore within reach when the need occurs.

4.1.1.2 Algebraic Solution Techniques
An issue of significant practical importance for HVAC problems is the solution of the
algebraic part of an initial value DAE problem. Before integration can commence, the
algebraic equations must be satisfied, and they must be kept that way throughout the
simulation. Many general purpose DAE solvers are ill equipped to deal with this
problem; all efforts have instead been devoted to the performance of the actual
integration.



28

Frequently occurring non-linear pressure-flow networks are the primary source of
demanding algebraic problems in HVAC applications. As we have pointed out, the
equations for multizone air flow, constitute a suitable test problem in this category.
Another source of severely non-linear algebraic systems of equations in HVAC
applications is refrigeration loops.

Solution of non-linear algebraic equations is easy - if a good quality guess of the final
solution is available. It is equally difficult if it is not. In a research situation, the need
for a good quality initial guess is less of a problem, since the researcher often will
accept poor robustness in this respect and is also able to give good guesses. For mass
distributed application programs, the situation is different. It is usually impossible to
require any non-trivial initial guess. The typical end user will simply not accept this
burden, and the problems may also have such magnitude as to make manual initial
value guesses impractical.

In IDA, a comparatively large effort has been devoted to the performance on alge-
braic problems. We will not go into algorithmic details here. Different angles of the
problem have been discussed in other IDA publications [Eriksson 1992] as well as in
Papers 3 and 5. Some of the main obstacles that have to be dealt with are:

Disappearing
Jacobians

Most algebraic solution algorithms rely on an estimate of the system
Jacobian9. During the course of the algebraic solution, the Jacobian
may become singular or nearly singular (ill conditioned), thus
making it impossible to continue with the present method.

Discrete
Events

Real systems generally contain discontinuities. A thermostat may for
example decide to switch as the solver is searching for a solution.
This creates sharp rifts in the residual surface10, that may be very
difficult to surmount.

Local Minima Similarly, the residual may show local minima that trap the solution
algorithm.

To handle these problems in an end user application setting, a range of practical
methods have been employed:

Explicit
Model Line-
arization

A crude but often necessary method is to explicitly provide a linear
approximation to the model. For some models, any linear version
may be completely unphysical, but it may nevertheless serve the
purpose of effectively generating a user-independent, non-trivial
initial guess. NMF has a special function (LINEARIZE ) for this
purpose.

                                               
9 the matrix of derivatives of every equation with respect to every variable
10 the multi dimensional surface that is created when some norm (estimate) of the equation residuals
(a measure of how well the equations are fulfilled) is plotted as a function of all variables.



29

Algorithm
Sequencing

A range of methods have been implemented in IDA to deal with
algebraic solutions. Several modified Newton methods, including
Homothopy methods (incremental loading), and Line Search are
available. Furthermore, Jacobian independent methods such as
Steepest Descent are employed. An application dependent sequenc-
ing of these methods is often efficient.

Analytical
Jacobians

Analytically given Jacobian matrices have better quality than nu-
merical estimates. IDA therefore allows the model-lab user to
explicitly provide Jacobian matrices for selected component models.
Such models have until recently been hand crafted in the IDA
format, but the latest version of the NMF translator for IDA Solver
provides analytical derivatives for variables where they can be
computed [Shapovalov 1996].

More work is certainly needed in this field, such as improved scaling of variables and
equations, and further hands-on, practical strategies. In fact, this is an area where
improvements always will be possible. However, IDA has already a very strong
repertoire in this absolutely crucial field.

4.1.1.3 Partial Differential Equations
A common characterization of the class of problems that are generally treated with
MSEs is lumped parameter models. These words indicate that approximations have
been made, and that the model reflects a selected level of resolution. All physical
processes that we model as algebraic have in real-life some dynamics, but the dynam-
ics are of a timescale that is irrelevant to the model. The same is naturally true for
spatial resolution, i.e., the processes that we model are really best described by partial
differential equations. However, PDEs can in general not be solved directly, but must
be discretized in space to an affordable spatial accuracy. For some PDE problems, a
few million states is not uncommon. These problems must naturally be treated with
specialized methods. It is unrealistic to treat anything but comparatively small discre-
tized PDEs with the standard methods of most MSEs. However, working with PDEs
at modest resolutions is a frequently recurring task, and the available MSE machinery
for these types of problems is of crucial importance to the overall productivity.

Let us look at some building simulation situations, where low-resolution discretized
PDEs are necessary. The single most common scenario is to solve the diffusion (heat)
equation in one dimension (1D) (see, e.g., the NMF Handbook). This is called for, not
only to calculate temperature states in walls, but a sequence of decoupled 1D models
is sufficient for many 2D situations. An example is the temperature field in a fin of an
heat exchanger. Longitudinal transport in the fin itself can often be neglected. True
2D problems occur for example when media transport tubes are immersed in material.
In Scandinavia, common problem types in this category concern floor heating and the
piping of district heating (and cooling) systems.

Since IDA and NMF support vectors and matrices, it is comparatively easy to treat
low resolution field models. An important feature is then the ability to have model
resolution as a parameter. NMF Model Parameters can in IDA be interactively
incremented. Many alternative tools are in reality are limited to scalars. In them, even



30

simple field models become major undertakings, since a change in resolution is not
easily accomplished.

Ability to handle vectors and matrices with dynamic dimensions is sometimes errone-
ously regarded as a petty detail. In terms of the IDA implementation effort, it is
however far from a marginal item. We have informally estimated that close to half of
the implementation work is due to these features. On the other hand, a large portion
of the application projects could not have been done in nearly the same time without
them.

Another important side of PDE modelling is of course the integration between MSEs
and various specialized field modelling tools. Today, stand-alone tools are generally
used for fine resolution field modelling. Computational Fluid Dynamics (CFD) is for
example frequently applied to the air flow within and around buildings. Finite Element
programs are similarly used for heat conduction problems in, e.g., cold bridges or in
the ground. In the long term, it is naturally desirable to create links between MSEs
and these different programs. An example of similar work is the integration of a CFD
code into the ESP-r tool [Clarke 1995].

The modular architecture of IDA, where module integrity is preserved throughout the
solution process is very favorable to such integration. The IDA methodology allows
individual modules to operate with their own timestep. Furthermore, modules can
utilize special internal module structure (sparsity) if necessary. An example of such
utilization has been studied for a finite difference pipe model [Eriksson 1991], but
further integration projects have yet to be conducted.

4.1.1.4 Variable Timestep
Variable timestep integration has been the standard in general purpose simulation
tools such as ACSL since the seventies. Yet, in building simulation, it is still regarded
to be somewhat exotic. This issue is also discussed in Paper 3, but a further key
aspect may be worthy of notice.

Physical systems with multiple and complex control laws will at any given time be in a
single of several possible states. Switches between states occur at irregular moments
in time, and are frequently triggered by each other. NMF modelling of such systems is
discussed in Section 5.4 of the NMF Handbook. To follow the time evolution of this
type of system and simultaneously the thread of state causality is a demanding task. It
is perhaps the single most demanding solver issue, even for variable timestep envi-
ronments, where the evolution of time can be arbitrarily controlled and repeatedly
reversed to explore various alternatives.

If the timestep is fixed and prescribed ahead of time, a solution scheme must be
devised to find the right system state at the next point of evaluation. In the special
case when the model can only exist in one single state under the given circumstances,
the problem of finding the right state among a finite number of discrete mode vari-
ables is of combinatorial nature. A scheme for this has been implemented in TRNSYS
version 14. However, even if the physical system will always be in a single state, the
correct state of any model may in fact be unpredictable, without resolving the actual
time evolution of the system.



31

A simple system comprising a thermostat controlled heater, that heats a thermal mass,
which is in imperfect contact with a thermal reservoir (see Paper 3, and ASHRAE
NMF Translator installation test case [Grozman 1996]), is sufficient to illustrate this
fact. The system will continuously switch between heating the mass and cooling off
into the reservoir. The model will have a single mode state, the thermostat on-off
control, and a single continuous state, the temperature of the mass. Now, let us
assume that we are given the right temperature of the mass, and are asked to predict
whether the thermostat is on or off at a given moment in time. Without any knowl-
edge of the immediate past of the system, the task is obviously impossible. Yet, this is
in fact the very dilemma that a fixed timestep solver is asked to resolve. For such a
simple problem, one may argue that if the fixed timestep is selected small enough, the
solver will work fine. This is true. However, for many “natural” HVAC systems the
mode logic is much more complex, and switches occur arbitrarily close together.

4.1.1.5 Discrete Time Models
Micro processor based controllers are today in complete dominance. Through sen-
sors, they sample the state of the controlled system at fixed points in time, and then
run an internal algorithm to determine actuator action. The process is inherently
discrete and although it is often possible to model it using continuous methods, it is
obviously desirable to be able to capture the true behavior.

A straightforward way of doing this in a continuous time environment is to fix the
timestep of the integration algorithm to agree with the desired sampling rate. This
method has been adopted in, e.g., a recent ASHRAE project aiming at the creation of
a control testbed for TRNSYS and HVACSIM+ [Haves 1996]. The main drawback
of the method is naturally that the controller sampling rate seldom is optimal for the
integration of the continuous system.

A more desirable method is to allow the controller to operate with a fixed timestep,
while a variable timestep is applied to the continuous part of the system. This func-
tionality remains to be implemented in IDA. The plan is to start this work during the
spring of 1996.

4.1.1.6 Delays
So called plug flow models for, e.g., flow in pipes can in some applications be very
efficient. To model them, a delay operator is required, i.e., a mechanism to, for a
certain time, memorize and then recreate a signal.

No dedicated delay operator has yet been implemented in IDA. This is a planned
feature and should not present any fundamental problem. A delay model such as the
one in HVACSIM+ is in principle directly applicable. However, a close coordination
with the native numerical algorithms is desirable and can be expected to perform
better.

4.1.2 Openness
In this section some different aspects regarding requirements on openness will be
discussed. Much of this discussion is rooted in Paper 4, which should be read in
parallel.



32

4.1.2.1 Model Transparency
In monolithic tools, the mathematical model is generally presented separately in the
documentation. Quite often, essential bits of information have been left out, i.e., it
would be impossible to recreate a program with the same behavior based on the given
documentation. As with the program itself, the documentation has been written with
some typical user in mind, and a user that requires a slightly different view of the
implementation may be out of luck.

In the MSE case, it should be possible for every type of user to investigate the model
in its smallest detail. Any model equation can be investigated, and, if the user has the
appropriate access rights, it can be altered. Similarly, it is possible to individually
monitor the time evolution of any variable.

Internal details of the solution algorithms may be hidden from the MSE user. The
environment has the responsibility to solve equations within a given accuracy. The
exact method for doing this may in principle be concealed. However, for diagnostic
purposes, it is often desirable to give the user access to internal steps of the solution
sequence as well, e.g., Jacobian and residual elements. Quite often, suspected errors
in the solution procedure, in fact, turn out to be errors in the model. If the advanced
user has good diagnostic tools at hand, such problems may often be resolved without
contact with the developers.

4.1.2.2 Model-Lab Design Tools
Not only inspection of model details is important. The extent at which a user is
empowered to manipulate a model is another crucial issue. In Section 1.3.1 we
discussed different MSE user types. A pure model-lab user utilizes the environment to
develop new mathematical models and to perform experiments on these models. The
majority of existing MSEs have been developed to primarily serve this user group. A
building designer, on the other hand, will generally have little direct use for a full
model-lab environment. The designer is generally not an expert modeller, and requires
instead, as we have discussed, first of all access to ready made applications, where
simulation problems are described in familiar terms. One might argue then that most
model-lab functionality should be removed from an MSE for the designer end user.
Ability to manipulate individual equations is hardly motivated for the designer end
user. On the other hand, possibility to tailor the structure of the simulation model with
respect to the given problem is an obvious requirement. A multizone thermal or air
flow model with fixed zone topology would for example be of very limited value.
Thus, a suitable amount of model-lab functionality is required. We will briefly present
and defend the level that has been selected in IDA. Some necessary background for
this discussion is presented in Section 2 of Paper 4.

A guiding principle for IDA application development is the following: Although some
users require strong support and guidance by application GUIs, they should always be
able to operate the model with full freedom11, with the exception of reformulation of
model equations. The GUI should act as a wizard that helps the user to formulate a
suitable simulation problem, but it should never become restrictive. An example that

                                               
11 Changing model parameters, start values, and boundary conditions are examples of such model
operations.



33

illustrates this principle is a recent application called the Pilot, which will be discussed
further in Section 6.1.1.1. In this application, a complex heat balance model is gener-
ated from a handful of input values given by the user in a single dialog box. The
common user will then proceed with the simulation of the generated model, as with
any so called simplified tool. However, the more ambitious user may also investigate
the result of the automatic model generation and adjust individual data as necessary.
Even the topological structure of the model may be changed.

The Multizone Air Exchange (MAE) application that was the main subject of Papers
4 and 5, is another example. Here, more is required from the common user. The
application is completely based on model-lab functionality, i.e., any user must be able
to build model structure using fixed submodels. (A GUI snapshot and further MAE
discussion can be found in Section 6.1.2.) When the basic structure of zones, leaks,
and system components has been completed - using the general model-lab machinery -
an application dependent algorithm is applied, that checks the structure for inconsis-
tencies, and that sets up a typical solvable simulation problem. Pressure levels are
given for the external boundaries of the building12, and all internal flows and pressures
are calculated from this. A common user can accept this problem and proceed with
the calculation. Another option is to depart from the base problem, and freely select
given and calculated variables, e.g., to find the massflows that are required to maintain
a certain pressure level in some part of the system. The latter case requires more from
the user, but on the other hand enables the study of many interesting additional cases.

Since March 1993, when Paper 4 was written, IDA development has focused on the
creation of a situation where the tools can be tested on real-life applications. Most of
this work has been of non-scientific nature, and at this moment we are still in the very
early stages of actual application development. However, in the new setting, this
development is carried out by industrial actors, and is driven by real end user needs,
rather than by academic speculation. A key question is naturally whether the IDA
principle of allowing every user (almost) full flexibility, while offering adequate
guidance for the inexperienced (or hurried) user, is overly ambitious. If a simpler
approach is sufficient, the burden in terms of code size and maintenance of the present
alternative will be unacceptable.

This question has been discussed carefully with a number of industrial users during the
last year and the answer is (fortunately) that the given flexibility is indeed desirable
and worth the additional cost. Next on the development agenda is a more comprehen-
sive IDA-based application for building climate and energy analysis. The specification
for this application has been formulated independently by future industrial users, and it
clearly calls for model-lab functionality.

In conclusion, although some meaningful applications are simple enough to do
without the possibility to edit models interactively, many building simulation applica-
tions will indeed require this flexibility.

                                               
12 The given pressures are calculated from wind pressure coefficients and external temperature, all of
which are given by the user.



34

4.1.2.3 Access to Model Libraries
A key factor to rapid development of end user tools is a direct import capability of
models from other developers. The ability to reuse models is crucial. Naturally, this
depends to a large extent on the existence of standards such as NMF. We will return
to NMF in Section 4.2. In present IDA application development projects, roughly half
of the effort is devoted to NMF model development, usually based on some existing
(monolithic) template application. The modelling part of application development is
significantly reduced in the cases when ready-made NMF libraries are available.

Another interesting standard for models is called DSblock (Dynamic System block)
[Otter 1992]. This standard is not concerned with the source language for simulation
models, but rather the format of the target code. It is a program neutral form for
TYPE subroutines, to use the TRNSYS nomenclature. A common description of up
to eleven Fortran or C subroutines for a model is suggested. DSblock allows descrip-
tion of ODE as well as DAE based systems of equations, with time and state depend-
ent events.

Neither IDA nor available NMF translators support the DSblock format at this point.
However, an NMF translator could easily be developed for this format, and IDA
could also with limited effort be configured to call DSBlock models.

4.1.2.4 Product Model Data Import
A similar, but conceptually more complicated, situation exists for the use of simula-
tion applications. To be able to directly import model input data from data-base
descriptions of the simulated object is a requirement.

Some initial work in this field is presented in Paper 6. IDA is still lacking any support
for such import. This is not only due to our limited efforts in this field, but also to a
lack of standards, such as those that have been proposed by, e.g., COMBINE.

4.1.3 Implementation Form
In this section we will discuss some general issues regarding the form and structure of
the IDA implementation. A successful MSE implementation must not only provide a
well-structured and productive environment for the main developers. It must also
accommodate different users, ranging from building designer end users, via model-lab
users, to third party application developers. The dependence on non-standardized
tools and tools that incur additional cost for distributed applications must be mini-
mized.

4.1.3.1 Distributability
A typical IDA application utilizes a large portion of the IDA kernel, and the amount
of application dependent code is significantly smaller than the common IDA runtime
system. A fundamental question is whether to package each application with its own
copy of the runtime system or to allow applications to share the same. The latter
approach is considerably more difficult to realize in the general case, since an end user
must then be able to install new applications into his/hers already existing IDA-
environment.



35

The better code size economy of a common runtime system is obvious, and although
such considerations are loosing importance these days, they must still be taken into
account. The IDA runtime system will generally occupy a few (4-6) megabytes of
internal memory. Another, perhaps more important consideration is that some IDA
applications will be of a more general nature. They will be able to utilize components,
mainly NMF models, from several present applications. The final form for IDA mass
distribution has yet to be developed, but it will most likely have three distinct levels:

user type type of IDA system need for compiler

end user • runtime system is attached to a
fixed suite of applications

• fixed submodel model-lab
features available

no

model-lab user • runtime system is separated from
applications

• full model-lab features available

simple

application developer • developer’s version, with ability
to generate applications that can
be distributed

full

 Table 4-1. Summary of IDA user types and program versions

4.1.3.2 Portability
Good portability to different platforms is naturally required. For the GUI independent
part of the system this can be accomplished rather easily, although the need to inte-
grate with compilers complicates matters. The difficult part concerns the GUI.

A number of toolkits exist that allow a single GUI source code to be portable to all
major platforms. The main drawback with this approach is that it is difficult to attain
true native look-and-feel on all target platforms. How important is then native look-
and-feel for IDA based applications? The answer is: very. Designer as well as ad-
vanced end users have, in our experience, low (and rapidly decreasing) tolerance
against aberrations from native look-and-feel, and little appreciation for code port-
ability.

The industry standard multi-target GUI toolkit for Common Lisp is CLIM 2.0. Aside
from the general problem with native look-and-feel, the present implementations of
this toolkit also suffer from size problems. The burden of several extra megabytes of
runtime code is, in our situation, another argument against a general approach.
Furthermore, it seems as if Windows is in almost complete dominance in the building
industry. For these reasons, the IDA GUI is tied to Windows for the time being. A
Common Lisp based GUI toolkit, Common Graphics, is used.



36

4.1.3.3 IDA Implementation Languages
IDA Modeller is implemented in CLOS (Common Lisp Object System), an ANSI-
standardized object oriented language. The IDA NMF translator is implemented in
straight Common Lisp, and IDA Solver is implemented in Fortran 77 (soon 90).
Discussions about language preferences tend to become lengthy. Here we will just
touch briefly on some aspects.

In a preparatory language study before the implementation of the OmSim system, it
was stated that “a full-fledged Lisp system is one of the most efficient programming
environments available” [Brück 1986]. For a number of years, the main drawback was
that such a system required either dedicated hardware, so called Lisp machines, or
extremely expensive hardware and software. Today excellent Lisp systems are
available for a few hundred dollars on PC:s. Furthermore, CLOS has an array of
features that makes it attractive in comparison to C++, such as automatic collection of
unreferenced objects (garbage) and runtime class redefinition. On the other hand, the
main disadvantages of Lisp are:

learning
threshold

Although most OOP languages take time to master (certainly true for
C++), gaining Common Lisp coding proficiency requires a larger
initial effort than for most traditional languages. However, the
prevalence of environments like AutoCAD and EMACS proves that a
Lisp based application development language can be successful.

tool abun-
dance

In the last few years, C++ environments and toolkits have grown to
almost complete dominance. In consequence, most application
development material is available in C++, much less in Lisp. However,
it is also apparent that there is room for technical alternatives in an
ever expanding market. Visual Basic, Delphi, Smalltalk, Scheme, and
even Fortran are still very much alive.

Although the original choice in 1987 of Lisp for the implementation of IDA Modeller
was rather ad hoc, we would make the same choice today, were we to start a similar
project from scratch.

Dependence on existing factors is a more central consideration for the implementation
language for IDA Solver. Fortran certainly leaves much to be desired in terms of
language structure. Runtime efficiency is the dominant positive aspect from a lan-
guage design point of view. This is naturally not unimportant for a pure “number
crunch” task. A notable fact is that Fortran usually is one of the very first languages
to have compilers implemented on new, inventive, often parallel hardware architec-
tures. It is important for IDA Solver to run well on special processor-intensive
machines. However, two other issues completely dominate the arguments in favor of
Fortran:



37

numerical
libraries

Direct access to numerical library routines is a key ingredient to most
large scale numerical development. Fortran is in total dominance for
such material. If the solver is written in some other language, auto-
matic translation or foreign function calls are required to access this.
Both have significant disadvantages.

numerical
experts

Numerical analysts are very often Fortran oriented. It is important
that the code is quickly accessible to any expert in this field, not only
to the main developers.



38

4.2 Modelling Language Design Issues
IDA, as well as several alternative simulation platforms, are based on machine-
readable model representations; the models are regarded as data, rather than being
bound to the program code. This makes it possible to collect models into model
libraries and provide working mechanisms for model reuse. Usually, a simulation
platform is shipped with a library of basic models, and it is up to the user to extend it.
However, such libraries are at present strictly tied to the platform itself. Models from
other platforms have to be re-engineered and re-implemented into the native format, a
laborious and error-prone task. NMF, which is introduced in Paper 2, facilitates
model exchange between users of different simulation platforms. NMF development
trends are discussed in Papers 6 and 7. The NMF reference report [Sahlin 1996b] and
Handbook [Sahlin 1996a] are not part of this thesis, but contain necessary comple-
mentary material. Here, we will elaborate on NMF design in the same spirit as we
have for IDA.

4.2.1 Background and Objectives
The need for mixed static and dynamic system models was discussed in Section
4.1.1.1. There are many different ways to formally describe such a model. Many
systems can, e.g., be expressed in terms of electrical network analogies. The same is
true for the Bond Graph formalism. Among experienced simulationists, preferences
vary considerably. Most common in all engineering fields is probably still the use of
Fortran subroutines, with tool-specific argument conventions, as in TRNSYS and
HVACSIM+, or equally non-standardized object message protocols. All such low-
level conventions share the fundamental disadvantage of being nearly impossible to
process symbolically except for in special cases, e.g., symbolic generation of the
derivatives of certain classes of subroutines. Other critical symbolic model transfor-
mations, such as index reductions, are quite impossible.

Dymola was proposed in 1978 by Hilding Elmquist as a general modelling environ-
ment for dynamic systems using a machine readable equation (DAE) formalism.
Expressing model behavior with equations is natural for engineers in most fields. It
requires no special training and no manual problem transformation into a special
formalism. Bond Graph supporters will argue that physical insight is lost but, on the
other hand, DAE-modelling allows straightforward expression of indispensable
phenomena that are not encompassed by regular Bond Graphs. Examples are convec-
tive transports in media of possibly multiple compounds, control signals, pure delays
etc. Similar objections will apply to any high level formalism that makes assumptions
about the underlying system being modeled. Thus, an equation based formalism that
can be processed symbolically is likely to be an optimal base for a standard with
potential use in different domains.

Dymola and later descendants such as LICS [Elmquist 1986] and Omola [Andersson
1990] have not been widely used until recently. Aside from a range of practical issues,
the main reason for this is most likely the previous lack of robust and efficient solvers
for general DAE-systems with discrete events. Dymola has in the last few years had a
revival and is now a popular, but proprietary, language and modelling environment for
a broad spectrum of simulation tasks.



39

A similar language that was developed in direct conjunction with a full MSE environ-
ment is the SANDYS language that was introduced in the early eighties [ASEA
1983]. It has good mechanisms for description of discrete events, but has - lacking
ways to bundle variables in component connections (cf. NMF links) - less developed
facilities for modelling at a higher abstraction level, i.e., without direct knowledge of
model content in terms of individual equations and variables.

The ESACAP language is originally based on electrical network analogies, but also
allows general DAEs. No link concept is available here either.

Yet another equation based language is ULM (Un Langage de Modélisation) under
development at Gaz de France. ULM has a similar scope as NMF, but with more
emphasis on the separation between the (pure) mathematical model, and the numerical
(technical) manifestation of the model in a particular solver.

A specialized language for digital electronic circuit description is VHDL [Perry 1991]
(VHSIC Hardware Description Language). A project supported by IEEE is proposing
an extension of VHDL to describe the structure and behavior of analogue circuits and
systems as well. An extension based upon a large collection of requirements, VHDL-
A, is being developed by a special group in IEEE since 1993. It is expected that
results should be merged in VHDL around 1998. This language will support hierar-
chical decomposition, differential or algebraic equations and different abstraction
levels.

NMF is much inspired by Dymola and its descendants, but has a different basic
objective: To be a source language for large common libraries of validated and
documented simulation models. It is not primarily intended to be effective for a single
user or a small group, working with a single simulation tool.

Main NMF objectives are:

Multi-environment
compatibility

as proven by the existence of translators to a range of different
tool-specific formats.

Engineering
usability

NMF expresses not only the model itself, but also relevant
information about the model, such as range of validity,
variable meanings and units.

Neutrality The evolution of NMF is presently governed by an open
ASHRAE committee.

A frequently raised objection against NMF is due to a misunderstanding of the
intended scope. NMF is not a complete modelling language. It does not describe all
the information that is necessary to run a simulation problem in any of the target
environments. Some essential things that are missing are ways to connect component
models into system models and ways to describe simulation data, such as start and
stop times, tolerances, driving input functions, variables that are to be logged etc. All
such information must be described in the format of the local simulation environment,
i.e., NMF is a complement to the local format - to facilitate model exchange - not a
replacement. There is no fundamental problem to extend NMF to cover more of what



40

is needed of a complete language. Indeed, such work is underway, e.g., as described
in Papers 6 and 7. However, at the same time, it is important to recognize that the
present NMF covers a very high percentage of what is needed for model exchange
between environments. The need to exchange entire simulation problems is far smaller
than that of sharing component models.

The discussion about description languages for dynamic systems is interesting. Some
language proposals suggest aesthetically pleasing ways to describe systems, with little
concern for practical usefulness, in terms of available solvers that can interpret the
description. The boundary conditions for NMF have been chosen to be restrictive.
They are defined by the proven capabilities of several existing simulation environ-
ments, and not just a single. It is too restrictive to require that any model can be
treated to satisfaction in all target environments. Naturally, the abilities of IDA have
had some impact on the NMF design. However, and this is important, every effort has
been made to keep NMF a neutral model description language that is rooted in state-
of-the-art solver technology.

In comparison with the development of regular high level programming languages,
equation based model declaration languages are still in their infant stages. It is not
unreasonable to expect that a similar degree of heterogeneity will develop in this field,
due to differences in taste, functionality, and target audience. A single standard, that
satisfies all needs and preferences, is unlikely to ever develop. A range of languages
with different profiles will be needed to serve the various user categories.

In the next few sections we will discuss some basic NMF design considerations, and
some planned extensions. Headings have been selected to indicate our view of suitable
issues in a language evaluation project.

4.2.2 Syntactical Structure
A successful language must be aesthetically appealing to its target audience. Com-
puter scientists are rarely pleased with the look of NMF, while engineers equally often
are. From a compiler designer’s viewpoint, NMF is a bit odd. No clear principles
prevail in terms of necessary parser look-ahead. The BNF (Backus Naur Form, see
Section 5.2.1 of the NMF Handbook) description of the syntax is quite complicated.
Prefix, infix, and postfix operations coexist. Naturally, it would be best if all groups
could be satisfied. However, if a choice has to be made, as we believe, the end users
are given preference in NMF.

The Matlab language - designed by a numerical analyst, Cleve Moler - is an interesting
example of another language that has been tailored for end user satisfaction. The
expressive power of the language coupled with the underlying Linpak numerical
methods has formed a winning combination. For a compiler designer, the language is
less appealing. It is unclear whether it is at all possible to express the syntax in BNF.

NMF has a BNF description and is processable by staple compiler tools such as the
standard Unix tools LEX and YACC. The SPARK translator [Nataf 1995] has been
developed in this setting. The programmable ASHRAE translator [Grozman 1996],
uses automatic parser generation in the same spirit, but has been implemented in
Common Lisp to facilitate easier inclusion of computer algebra functionality.



41

4.2.3 Expressiveness
The set of phenomena that can be described with a given language is naturally the first
thing to look at. The scope of the present NMF is a balance between need and
available resources. In present NMF, the main model type is the CONTINUOUS_MODEL,
which we will discuss at some length. We will also briefly cover two other model
types, algorithmic and field models, formats of which will be suggested in the near
future.

4.2.3.1 Global Declarations
A fundamental NMF design decision is to use explicit units for model quantities. An
NMF model is always written with respect to a particular set of units. The basic
motivation for this is that many engineering models are expressed in terms of unit-
dependent empirical laws, often in quite utilitarian units, including IP (Inch Pound)
based unit systems. To exclude such models or to treat them as exceptions would be
in conflict with the engineering usability objective.

In NMF, the modeller is free to select any mixture of units for a particular model. The
idea is that the existence of influential model libraries in certain units will provide an
incentive to develop further models in compatible units. In engineering practice, also
in SI dominated territory, slightly inconsistent unit families are often used, e.g., kWh is
a common energy measure, l/s  or m3/h  is often used for volume-flow. In conse-
quence, NMF models frequently contain internal conversion factors to accommodate
for such inconsistencies in the chosen set of units.

A common view is that the numbers that are presented to the user, always should be
filtered from those that are actually being processed, and that such a separation
facilitates usage of more consistent units in the mathematical model description. What
is suggested is a model formulation that allows a complete change of unit system
without alteration of model equations. In consequence, the language should require
usage of “pure” unit systems such as SI or no units at all, just quantity dimensions.
Aside from the problem with empirical models as previously mentioned, two serious
objections against this view can be raised. First, for practical application it requires
that all compatible environments contain a complete filtering layer. This puts severe
restrictions on the number of target environments that can be accessed in practice.
Secondly, although it is desirable to have such a filtering layer for certain quantities,
also for NMF models, it is confusing with too much filtering from a numerical diag-
nostic point of view. It is unavoidable that investigation of detailed solver action is
required in application development, and the efficiency of this process is a real
bottleneck which has to be taken into account in the language design.

One should also recognize that the choice of units for a model can be altered with
automatic means at a later stage. The original choice is just a well defined base case,
from which any conversion can be made, either symbolically, using computer algebra,
or numerically, using conversion factors in the target environment.

In the present NMF version, there are some omissions that complicate automatic unit
conversion and consistency checking. The unit declaration string is only informally
standardized, and NMF function output is presently untyped. Both these areas will be
covered in future releases.



42

4.2.3.2 Continuous Models
NMF CONTINUOUS_MODELS express general systems of non-linear differential-
algebraic equations. Equations may contain time and state dependent events. Vari-
ables and parameters may be vectors and matrices. Field dimensions may be user
controlled parameters, so called MODEL_PARAMETERS, and the fact that these may be
changed interactively in an instantiated model, gives rise to some syntactical limita-
tions on the way indices may be used in the code. It would, for example, be difficult to
handle links with matrix structure. In consequence, there is a limitation in NMF to
vector links. The need for field variables as such has been discussed in Section
4.1.1.3; some commented examples of actual models can be found in the NMF
Handbook, Section 5.1.

The need to change field dimensions interactively - without re-instantiating and
thereby re-parameterizing the model - in an interactive modelling session might need
some illustration. Situations where this is convenient is, e.g., when a model has a
flexible number of ports13 (vector links) and the user decides to connect an additional
component, or when the resolution of a field model needs refinement. Most alterna-
tive languages lack working support for field variables at all, and we have not yet seen
any implementations that can be compared with IDA/NMF in terms of interactive
abilities. Dynamic fields have major impact on many language constructs, and their
value should be accounted for in the comparison of different languages.

Another NMF choice with significant impact on overall structure is the possibility to
declare additional information about equations and quantities. Examples of such
information items are GOOD_INVERSES for equations, and IN  or OUT role for variables.
With the EXTENSIONS construct that is proposed in Paper 7, any type of information
may be added in this way. Examples of useful such information - for a single or a
range of target environments - is an explicit inverse to an equation, and labels for
equation and variable category14.

A consequence of the possibility to label equations is that it makes it awkward to
allow so called conditional equations, i.e., multiple versions of equations delimited by
IF-THEN-ELSE  constructs. An example with conditional equations could be:

IF a < b THEN   /* NOTE! THIS IS NOT CURRENT NMF */

  x + y = f(z);   /* equation 1, case 1 */
  x1 + y1 = g(z); /* equation 2, case 1 */

ELSE

  x = z;          /* equation 1, case 2 */
  x1 = z;         /* equation 2, case 2 */

                                               
13 An example of such a model is a zone model to which a flexible number of wall, window, and
light fixture models might be attached. A storage tank with a flexible number of pipe terminals is
another example.
14 For many problem types it is advantageous to partition the problem into a sequence of uncoupled
or loosely coupled subproblems, that may be solved sequentially. An example is a mass-pressure core
problem, with a number of subproblems for transport of various substances through the system that
can be calculated rather independently.



43

END_IF

In present NMF, this code would be written with conditional expressions instead
(GOOD_INVERSES declarations have been added to illustrate equation labeling):

x =  IF a < b THEN
        - y + f(z)
     ELSE
        z
     END_IF GOOD_INVERSES( x, z); /* equation 1*/

/*  The z good inverse declaration assumes that the modeller
    knows that f and g are well behaved*/

x1 = IF a < b THEN
       - y1 + g(z)
     ELSE
       z
     END_IF GOOD_INVERSES( x1, z);  /* equation 2*/

The latter construction makes it easy to keep track of defined equations, and any
associated extra information. For models with many alternative modes, it may how-
ever become awkward.

Another current NMF choice that can be questioned is that assigned variables are
illegal on links, i.e., variables that have received their value through assignment, may
not be visible on the boundary of a model. A consequence of this restriction is that
models, that are just wrappers to subroutines, must contain trivial equations, the sole
purpose of which is to equate subroutine output with link variables. An example of
such a model is discussed in Section 5.3.2 of the NMF Handbook. The full conse-
quence with respect to model clarity of changing this rule is difficult to determine. The
simplicity of the current rule, that the number of equation signs must agree with the
number of OUT variables, is perhaps more valuable than the compactness that would
be attained by avoiding the trivial equations.

Whether assigned variables should be allowed on links or not is from one perspective
naturally a petty detail. On the other hand, it is becoming increasingly clear that the
pedagogical issues regarding NMF are perhaps the most important of all. For many
physical systems, it is genuinely difficult to formulate well posed DAE models that
cover all possible cases. Even experienced modellers get confused among large
numbers of equations and the various operative modes that a model may be in. From
this perspective, the traditional way of writing models - as subroutines with given
input and output - have some merits. At least they have a very clear and easily ex-
plained purpose: to calculate outputs, given inputs. The alternative task, to declare a
sufficient number of “truths” in terms of equations for a component is much more
abstract and therefore more difficult to explain.

The NMF way of writing an equation based component model - with local assign-
ments, and explicitly declared IN  and OUT variables - allows a user to think as if it was
a subroutine that was being written, with a single important exception: No solution
algorithms for implicit systems of equations have to be hand-coded. This NMF
repertoire, which sometimes is criticized by equation puritans, may actually prove to
be easier to handle for beginners than a pure equation oriented description. Clearly,



44

more work is needed to optimize the pedagogical aspects of all declarative equation
based languages.

4.2.3.3 Algorithmic Models
Although equation based model descriptions are preferable for most physical compo-
nents, they are not optimal for modern digital controllers. Sampling controllers are
causal and algorithmic in nature. They read input signals, run an internal algorithm,
and produce output signals. Controller sampling is generally governed by an internal
clock. However, the basic concepts of a controller can be useful also for other
processes if the procedure of generating a sampling event is generalized to be an
external signal. For a fixed timestep controller, the external signal would simply be a
clock. Let us call the more general model an algorithmic object.

The NMF definition of algorithmic objects has not yet been finalized, but it can be
accomplished with very similar constructs to those of CONTINUOUS_MODELS. It is
natural to retain the concept of assigned state variables (A_S) and to require that OUT

variables are calculated by assignments from IN , LOC, and A_S variables. LINKS  should
be allowed to contain IN , OUT, and VOID variable positions. VOID being positions that
are neither read from nor written to by the algorithm.

Aside from controller models, algorithmic objects would in building simulation be
useful for, e.g., weather data processing and on-line post processing (often just
summation) of simulation outputs. The sampling events would then coincide with the
continuous integration timesteps.

4.2.3.4 Field Models
Another interesting model type in the slightly longer perspective is some framework
for pure PDE models. Several levels of generality are possible. A reasonable choice
could encompass parabolic equations that are discretized by finite elements. For the
computational grid, the most straightforward alternative would be to require an
explicit description. However, automatic meshing is a rapidly evolving technology,
and it might be possible to base a model format on this. In this case, only the compu-
tational domain would have to be described.

Field models are a natural NMF extension, but do not appear on the immediate
development agenda. It is also rather clear that, except for the actual equations, the
source code of a field model would be rather uninteresting. Domains and meshing
would naturally be both generated and interpreted by special tools.

Other inherent limitations of a text based source code language have been discussed in
Paper 6. Large system models, e.g., are also awkward to describe and interact with in
text based form. The balance between textual language descriptions and data base
ditto is another interesting issue that in the future is likely to divide different ap-
proaches from each other.

4.2.4 Level of Standardization
Although expressiveness certainly is a key factor for language evaluation, some other
aspects have to be taken into account as well. The second most important considera-
tion is probably level of standardization. A language, the evolution of which lies



45

completely in the hands of independent developers, is a high-risk option for any
potential user or independent tool developer.

Presently, NMF is governed by an ASHRAE committee. This is an interim measure
pending a formal standardization process. However, it serves the practical purpose of
ensuring that the language is reasonably stable, and that proposed extensions are
introduced in a controlled fashion.

One should also recognize that the very fact that a language is computer processable
represents some security. If the information content is sufficient, the language can
often be automatically translated into an alternative format. An example is the gener-
ated code for TRNSYS types. If NMF died and a TRNSYS user had a large number
of models in NMF form, the generated TRNSYS source code version of these models
would be an excellent base for further work, since the structure, comments, naming
conventions etc. of the generated code is of better quality than that of most hand
written models.

4.2.5 Introduction Threshold
Another consideration is the start up time for beginners. Mastering the full extent of a
language may often take some time, but to write and fully understand the first few
models should not. Two things that should be taken into account are:

• Initial test models should not be too simple. They should reflect a reasonable real-
life situation in the intended area of application.

• Differences in information content of languages should be given special considera-
tion. Many languages attain compactness by omitting certain information, or by
treating it as comments, which are difficult to process automatically. This will have
significant impact on the translatability of the language. Units and variable descrip-
tions are obvious such examples. A less obvious thing might be variable CROSS or
THRU status, which in some languages, e.g., the SPARK native language, is treated
implicitly, in the way equations have been formulated. This is equivalent to having
CROSS type for all variables.

4.2.6 Translatability and Openness
Interfacing with external programs is of course another key NMF issue. Translatability
to various target formats is the most important side of this question. However, a less
discussed side concerns the ability to interface with subroutine based models. Access
to such models is important for primarily three practical reasons:

1. Key parts of a model may be hidden in binary form for commercial purposes.

2. Large existing packages can be accessed with a minimum effort, without re-writing
and re-debugging.

3. Efficiency can often be gained by using a tailored procedure for particular models.

The technical details of NMF subroutine calls are discussed in Sections 5.3 and 5.4 of
the NMF Handbook. Here, we will concentrate primarily on the underlying motivation



46

for the NMF design with respect to both foreign subroutine calls and translatability.
The structure of the discussion will be based on some specific NMF constructions.

The interface issues discussed in this section conclude the presentation of suggested
language evaluation criteria. One should recognize that the chosen interface charac-
teristics have profound impact on the language design, both in overall structure and in
details. The degree of translatability to various target formats is a difficult and inter-
esting subject that we will only be able to touch briefly upon here. Obviously, the
design decisions of the individual code generators for different target environments
must be examined for a more thorough treatment of the issue.

4.2.6.1 Vector to Scalar Mapping
The issues of dynamic field dimensions - NMF model parameters - have been dis-
cussed in Sections 4.1.1.3 and 4.2.3.2. They must also be considered in the treatment
of translators. In the simplest case, when the target environment lacks field variables,
model parameters must be given values in the translation process, and corresponding
scalar code is generated15. In this case, model versions must be generated for each
interesting combination of model parameter values, or the translator must be inte-
grated into the modelling environment. The latter alternative is naturally the most
attractive.

However, if the target environment supports dynamic field variables, it is essential to
make sure that the chosen translator preserves this flexibility. Such support is one of
the most difficult issues in translator development, especially for translators with
computer algebra capabilities, since operations sometimes must be done on subsec-
tions of fields. General purpose computer algebra tools such as Mathematica do not
support the required field operations.

The TRNSYS and HVACSIM+ solvers can handle dynamic model parameters, and
the ASHRAE translator generates proper TYPE routines to support this. However,
the present modelling tools for these solvers generally do not support dynamic model
parameters. This is a serious disadvantage of, e.g., HVACGEN and PRESIM, which
limits their applicability (also for native models, such as building models with flexible
number of zones). The ASHRAE translator supports HVACGEN, but with fixed
model parameters only. All current IDA translators [Kolsaker 1994c] [Grozman
1996] support dynamic model parameters without restrictions.

4.2.6.2 Assigned States
Models with hysteresis cannot be expressed with equations alone. Some mechanism to
memorize past system state must be added. NMF’s solution to this problem is the
introduction of a special variable type, the assigned state (A_S in NMF code, see
Section 5.4 in the NMF Handbook). The value of an assigned state is retained be-
tween model equation evaluations. A basic motivation for the chosen construction is
that assigned states can be passed as memorized workspace to external routines. This
significantly increases the domain of applicability for NMF. The assigned states design

                                               
15 Each vector or matrix element becomes a scalar in the target code, e.g., x[1], x[2], and x[3] are
mapped to x1, x2, and x3.



47

is a fundamental choice that has profound impact on language grammar, translatabil-
ity, and openness to foreign routines.

The IDA, TRNSYS, and HVACSIM+ translators fully support NMF assigned states.
To the best of our knowledge, the SPARK and ESACAP translators also support or
intend to support them. Most real-scale solvers have some mechanism that can be
used to store values as required for NMF assigned states.

4.2.6.3 Event Signals
Explicit signaling of discrete events allows a continuous solver to control the timestep
and solution method in order to resolve system behavior to the desired level of
accuracy. This can have considerable impact on robustness and also on efficiency for
models with discontinuities. The introduction of multiple mode models by assigned
states and event signals actually enables NMF description of completely event driven
systems16. Robust solution of mixed continuous and discrete models is a permanent
challenge for all solvers. Not only is the solution difficult; it is also demanding to
formulate mixed models that are mathematically well posed in all cases.

Current NMF is limited to real variables. Any other choice would severely limit the
range of target solvers. This puts some restrictions on the effectiveness of event
signaling between submodels. However, as target solvers are developed, it is natural
to allow discrete variable communication at some stage. In contrast, a simulation
environment such as OmSim - developed in conjunction with a dedicated language
(Omola) - has better potential to treat mixed continuous and discrete models.

IDA has complete support for the localization of discrete events, as signaled in the
NMF code. This was first described in Paper 3, in 1991. TRNSYS, HVACSIM+, and
SPARK lack, to the best of our knowledge, support for internal events. HVACSIM+,
being a variable timestep environment, would be comparatively easy to extend in this
respect, since the basic ability exists to reverse propagation of time.

An important aspect of the NMF event signaling mechanism, by calls to special
functions, is that it may be employed to its full extent also in external routines. It
should also be noticed that short forms of the present event syntax can be constructed
to attain compactness. These can then automatically be expanded into the present
form in the translation process.

4.2.6.4 Model Linearization
The need for explicit model linearization was mentioned in Section 4.1.1.2. It is also
discussed in Section 4.5.1 of the NMF Handbook. Similarly as for event signaling,
explicit linearization is expressed with calls to NMF special functions, that may or
may not be supported by a particular target solver. The main advantage of this
strategy is, again, that linearization can be done also in externally defined routines. A
problem is that multiple calls to the LINEARIZE  function obscures the real non-linear
equations in the code.

                                               
16 The dynamical behaviour of event driven systems is generally described by dedicated methods such
as Petri nets.



48

An alternative that has been discussed [Lorenz 1994b] is to declare a completely
separate linearized version of the EQUATIONS section in a separate main section. The
main advantage of such an approach would be to gain model readability. Two objec-
tions to this approach are:

1. Only a single level of linearization would be possible in practice, since multiple
levels would require a complete model description for each level and this would
quickly become cumbersome. To introduce model non-linearities successively in
the solution process is a very effective method for many difficult algebraic prob-
lems.

2. Many model equations are already linear. A separate section would make it
necessary to repeat these, thereby introducing a double source problem with all its
disadvantages in terms of manually maintained consistency.

The lack of explicit linearization mechanisms in many of the alternative languages
highlights the fact that these are mainly targeted at advanced users working with pure
model-lab MSEs.

Presently, IDA Solver is, to the best of our knowledge, alone to utilize the NMF
linearize mechanism. However, adding such support should be easily accomplished in
all implementations that have any special treatment of initial value calculations. The
importance of such treatment in building simulation end user applications has been
discussed in Section 4.1.1.2 and in Paper 5.

4.2.6.5 Foreign Functions and Subroutines
The possibility to access foreign functions, without any limitation on the types of
models that are packaged in them, is a pronounced NMF design objective. Clearly, the
many advantages of having models in processable form are lost for such models.

Openness to foreign routines has influenced the design of many NMF constructs.
Limitations in this support, that are introduced by a translator or by a target environ-
ment, will have significant impact on the number of NMF models that can be ac-
cessed. Full support for subroutine calls, i.e., multiple input - multiple output objects,
can be difficult to implement in solvers that are originally designed to operate on
individual scalar equations.

The IDA, TRNSYS, and HVACSIM+ translators have full support for foreign
routines. If user defined routines are written in the NMF algorithmic notation, or in
Fortran 77, the translation process is automatic. For external C code, the foreign
function call must be completed manually by the user, since there is no standard for
such calls. It is unclear to us to what extent the present SPARK and ESACAP
translators support subroutine calls.

This concludes our discussion of NMF translator issues, and we will briefly turn the
attention to another type of NMF use, as source language for special purpose tools.



49

4.2.7 Translator Development for Special Purpose Tools
Until now, the discussion here, as well as nearly all NMF related research and devel-
opment, have dealt with general purpose simulation tools, i.e., tools which are built to
describe and simulate a very wide class of physical systems. However, as we have also
pointed out, tools with a more limited scope are generally more useful to designer end
users. Many existing such tools have some degree of modularity and it is not uncom-
mon that they have a local component model format that allows significant flexibility.

Large amounts of engineering effort are devoted to model development for these
tools, which often are tied to a physical product line. Common examples in the
building sector are sizing and system selection tools for air handling units, chillers,
boilers, and virtually all other HVAC components with non-trivial internal behavior. A
similar situation exists in many other industrial fields. We will briefly discuss the
applicability of NMF and translator technology to this class of tools.

A typical situation is that the special purpose tool prescribes a certain selection of
variables with given units that are communicated between submodels. This corre-
sponds to a single or a few NMF link types. Models are often static and contain only
scalar variables. Most environments in this category are input-output oriented, with a
prescribed component call convention, i.e., like a limited version of the TRNSYS
TYPE format.

Some development bottlenecks for such systems are:

1. Extension of component models is often time consuming, since various solution
methods, often based on successive substitution, are intertwined with the model
equations.

2. Inclusion of new models requires complete re-implementation into the designated
format.

3. Changing the designated format, e.g., to make it more general, or to add informa-
tion that is required for a new solution technique, involves manual treatment and
testing of the full library.

An NMF based component library with a dedicated translator would be helpful in all
of these situations. Although export of component models in source code form from
such proprietary libraries rarely will be an issue, being able to import models from
public libraries should be attractive, in spite of the fact that models often will have to
be manually treated to fit the fixed local link structure. Export of models in some
encrypted form for inclusion in, e.g., product models is another interesting perspec-
tive.

4.2.8 NMF Discussion
A number of key NMF design considerations have been mentioned. A more exhaus-
tive discussion - of NMF in relation to comparable languages such as Dymola, Omola,
and ULM, and of translator issues to the large number of possible target formats - is
of course also desirable. We hope that the presented list of issues will be an inspira-
tion for numerous future contributions to this exciting field.



50

NMF has a distinct and pragmatic profile. As we have mentioned, many alternative
profiles are possible. However, a conclusion that can be drawn is that any language
that is to be used as a base for common model libraries, must be rooted in the solver
technology of today. Such a language must be translatable to most major platforms in
its field of application. Otherwise, the incentive to contribute library material will be
limited, as will the possibility to utilize what is available.

An analogy can be drawn with Fortran and Lisp, both of which were conceived in the
early days of computing. Fortran was designed to replace cumbersome low level
languages and it became useful immediately. Lisp, on the other hand, was the result of
an academic exercise in the application of so called lambda calculus. It took close to
thirty years of computer development to make it practically useful17. Had Linpak,
NAG, IMSL and similar libraries been implemented in Lisp, they would have been
doomed to a life in seclusion.

The theoretical discussion of the aesthetic aspects of modelling languages for dynami-
cal systems is of significant long term interest. It must, however, not be allowed to
prevent the development of libraries within the boundaries of present technology. The
tendency to postpone the actual library building, while waiting for the next language
to be completed, is potentially harmful to the credibility of the whole idea of inde-
pendent model libraries.

                                               
17 It is still common with conference titles that end with “... on the Practical Application of Lisp.”



51

5. Comments to the Papers
In this section, we will attempt to connect the objectives of this thesis with those of
the individual papers. For some of them, this will require some additional discussion.

The papers have been written over an eight year period and are presented in chrono-
logical order. The authors’ maturing understanding of the subject and evolving
terminology is easily noticed. This inconsistency can obviously be confusing, but may
not always be pointless. Other researchers seem to have followed a similar path of
enlightenment, and having the history spelled out, might help in avoiding the repeti-
tion of some mistakes.

For the papers that have been co-authored, the author’s level of contribution will be
indicated.

All of the papers have been presented at conferences. They have not been submitted
for publication elsewhere. At the time, this did not seem important, since they reached
their target audience rather effectively and stimulated the discussion. All but Papers 1
and 6 have appeared in the IBPSA conference series and proceedings. All but Paper 6
have been subjected to independent review.

5.1 Paper 1: MODSIM - a Program for Dynamical Modelling and Simula-
tion of Continuous Systems
Paper 1, presented to the Scandinavian Simulation Society in 1988, was written less
than a year into the IDA project, which then bore the name MODSIM. Several name
conflicts, e.g., with the HVACSIM+ internal solver, made us later settle for the name
IDA. It originates from “ITM’s18 Differential-Algebraic modelling and simulation
environment.” The paper gives an overview of the project and the ideas, most of
which have actually survived. The research implementation of IDA, which is discussed
in several of the subsequent papers, followed the basic design that was outlined in
Paper 1. IDA Modeller is currently under revision, to better accommodate new GUI
and OOP standards, and to enhance the graphical repertoire in a way that is necessary
for a commercial product.

In the paper, a first in-house demo version is projected for the summer of ´88. This
stage was not in reality reached until February ‘89, and the program was demon-
strated rather widely in the spring. This first version lacked support for field variables
and internal events, and the only algebraic solution method was a full Newton
method. The demo version had been implemented in some two and a half man-years.
It is somewhat discouraging to realize that the remaining 80-90 percent of the project
has been largely devoted to consolidation of the first demo version. Successively more
difficult application problems have driven the development of a more comprehensive
range of methods. In Paper 1, the remaining work to a “full commercial quality
system” was estimated at between four and eight man-years. Discounting time spent
on funding issues, this is perhaps not more than a factor two off.

                                               
18 The (Swedish) abbreviation for Institute of Applied Mathematics.



52

Paper 1 provides the only overview of IDA that is offered in the framework of this
thesis. Another overview was written in 1991 [Sahlin 1991]. The current implementa-
tion will be presented in the ensuing year.

5.2 Paper 2: A Neutral Format for Building Simulation Models
Paper 2, written in the spring of ‘89, provides another early point of reference. The
text was the result of nearly a year of discussions at ITM, which was fortunate enough
to co-host Prof. Ed Sowell during a sabbatical. In the initial stages of the IDA project,
the importance of concise and processable component model descriptions had not yet
been fully realized. Components were coded directly in Fortran and Lisp, in a similar
way that is done for, e.g., TRNSYS and associated modelling tools. The shared need -
with the SPANK project (now SPARK) - of comprehensive model libraries, made us
look closer at the DAE-based languages DYMOLA and LICS, as a possible base for
such libraries.

Paper 2 also existed in a longer version, which did not fit in the IBPSA format. This
version has subsequently been updated and amended several times and is now the
NMF reference report [Sahlin 1996b].

Slightly more than two thirds of the text is written by the author of this thesis, the rest
by Ed Sowell. Equal and inseparable contributions to the ideas have been made also
by Magnus Lindgren, Axel Bring, Lars Eriksson, and Gustaf Söderlind.

5.3 Paper 3: IDA SOLVER - a Tool for Building and Energy Systems
Simulation
Paper 3 was presented in ‘91 at the IBPSA conference in Nice, France. It was moti-
vated by a lack of understanding of actual solver capabilities that often is revealed in
academic work on modelling and modelling languages. Many groups concentrate on
modelling issues alone without close contact with solver developers. Although
concentration certainly is necessary, this often leads to a considerable gap between as-
designed and actual performance. The paper was an effort to popularize some key
solver issues that must be taken into account also in the development of modelling
tools. Apparently, we had some success in this, since the paper gave rise to a range of
fruitful discussions and contacts.

Roughly equal parts were written by Axel Bring and the author of this thesis.

5.4 Paper 4: IDA Modeller - a Man-Model Interface for Building Simula-
tion
Paper 4 was one of two IDA papers that were presented at the IBPSA Adelaide
conference in ‘93. It attempts to start a discussion about the fundamental characteris-
tics that are desirable for a modern MSE for building simulation. This discussion is
continued in Section 4.1 of this thesis.

5.5 Paper 5: Modelling Air Flows and Buildings with NMF and IDA
Also presented in Adelaide, Paper 5, discusses the multizone air flow problem. As we
have pointed out, future building simulation software must be able to predict mul-
tizone air flow coupled with thermal performance. In this general area, several papers
have been written, reporting on a number of projects where thermal programs have



53

been merged with monolithic air flow codes. In our view, the success of such attempts
bear little hope for the future, as we will motivate further in Section 6.1.1.2.

Axel Bring has written the slightly larger part of the paper. The NMF models are
almost completely his work, but they are based on an idea for bi-directional flow
models by the author.

5.6 Paper 6: NMF-Based Aspect Models in STEP/ EXPRESS for Building
and Process Plant Simulation
Paper 6 reports our initial work in the area of product models, and their relation with
MSE based simulation tools. The paper was presented at the CIC W78 workshop on
computer integrated construction, in Helsinki, Finland, 1994, for an audience of
mainly product model researchers with limited simulation background. A similar paper
[Sahlin 1994] was also presented in the framework of an EC expert group, ESPRIT
WG 8467, with the purpose to discuss future needs in the simulation field (not
especially building simulation). Both papers were well received, which seems to
indicate an understanding from both sides of the necessity of cross fertilization.

The work was done in co-operation with, Curt Johansson, a student of Prof. Bo-
Christer Björk, at the Division of Information Technology in Construction at the
Royal Institute of Technology. The text is written by the author of this thesis. The
EXPRESS models were designed in dialogue. They are similar to internal data models
of IDA Modeller.

After a delay, the work of Paper 6 is now to be continued.

5.7 Paper 7: Future Trends of the Neutral Model Format (NMF)
In Paper 7, attention is returned to the text based NMF grammar. The work was
presented at the IBPSA Building Simulation ‘95 conference in Madison, Wisconsin.
An attempt is made to synthesize several years of discussion and NMF proposals that
have been made since the presentation of Paper 2 in 1989. However, little space is
sacrificed for background information and introductions and this makes the presenta-
tion rather terse for a newcomer. The paper lists six concrete proposals:

1. Hierarchical Modelling

2. Hybrid System/Continuous Models

3. New Function Definitions

4. Property Links

5. Model Inheritance

6. NMF Extension Keyword

All of these proposals require significant amounts of additional work in order to
assess their real practical applicability. The ASHRAE NMF committee has, at this
point, approved the main principles of the first two proposals, and we will start to
work on test implementations of these. The last proposal is also the easiest to accom-
modate in existing translators, and a slightly modified version of this has already been



54

implemented in the present ASHRAE translator. Proposals 3 to 5 are still very much
in the discussion stages.

The text of Paper 7 is written by the author of this thesis. The code examples are the
work of Axel Bring, Kjell Kolsaker, and the author. Several of the underlying ideas
are due to Kjell Kolsaker and other active independent NMF supporters.



55

6. Discussion
In this section, we will discuss the presented results in view of the main objective of
this thesis: to determine the applicability of MSE based technology as a replacement
for traditional program design. The discussion will be carried by a presentation of
some projects in the primary application areas that were defined in Section 1.4.1.

6.1 Summary of Relevant Application Projects
The projects that will be presented have been selected with respect to the primary
target applications. They have not been carried out for the purpose of this work.
Some of them are complete application development projects, while others are small
studies for the investigation of some physical system.

The comparison between traditional special purpose methods and the MSE approach
is complicated mainly because relevant evaluation criteria are difficult to establish.
The main advantages of most specialized methods are speed and robustness, while
MSEs feature flexibility, maintainability, transparency and other alternative qualities.
In this discussion we will concentrate on those that are directly comparable.

6.1.1 Building Loads and Energy Calculation
The first primary target application is also the most critical, since the absolute major-
ity of existing BPE tools have been developed for this purpose. MSE based technol-
ogy can be applied in various ways to this problem area. The most straightforward
way is to break the building into suitable component models and treat them with the
standard MSE methodology. It is also possible to sacrifice some general MSE advan-
tages for the fabric part of the problem (the zone model) in order to improve overall
performance. A further complication is that the preferred balance between accuracy
and speed varies considerably between the engineering cultures of different countries.
For example, in the United States, it is relatively common to make hourly simulations
for a full reference year on a fifty zone building. In Scandinavia, on the other hand, the
tradition is rather to study the behavior of a few key zones with more detailed, often
non-linear, models. Vast differences in weather, building tradition, and internal climate
preferences also exist, and these are reflected in the local tools.

Let us concentrate on three questions here:

1. Given the other advantages of the MSE approach, what is the relative performance
with respect to speed and robustness for a true MSE implementation of a detailed
heat balance zone model?

2. What can be said about the relative development times for this case?

3. Can previous investments in implementation, user training, and documentation be
retained by keeping existing monolithic tools as a part of a future simulation envi-
ronment?

6.1.1.1 Re-implementation of BRIS
Regarding the first question some relevant work has recently been done at KTH by
Mika Vuolle, Axel Bring, and Jan Akander [Vuolle 1996] [Akander 1995]. This work



56

also builds on results from a project at Chalmers Univ. of Technology [Ljungkrona
1994]. The task has been to develop a set of NMF models that can be connected into
zone models in IDA or in some alternative NMF compatible environment. Various
versions of the following main models have been implemented:

• a single air temperature zone model (excluding walls) with full non-linear radiative
and convective heat transfer, using a general view factor calculation algorithm

• various state-of-the-art window models

• full finite difference and reduced RC-network wall models

• solar radiation calculation models

• local climate control models

For the comparison of performance, versions of these models were especially adapted
to replicate the models of the most commonly used Swedish corresponding tool,
BRIS [Brown 1990].

An extensive set of comparative runs were performed on a suite of single zone cases
to establish agreement between BRIS and the new models (in BRIS version). Disre-
garding the limited time resolution of BRIS, the results match perfectly. BRIS used
fixed 0.5 h timesteps. IDA tolerances were selected to approximately match the same
total number of timesteps, although in IDA steps are unevenly distributed over time,
which gives significantly better time resolution. Differences in I/O make exact com-
parisons of execution time difficult, but similar cases show a ratio of 2 - 4, in BRIS
favor. Robustness was good for both programs.

In conclusion, single zone cases with on the order of 50 temperature nodes show that
for this type of problem, the performance penalty for the true MSE approach is
acceptable. Typical IDA execution times for a 24 h period is 5 s on a Pentium PC.
Larger multizone cases have yet to be compared. The performance of IDAs sparsity
utilization algorithms on larger building models is naturally a crucial issue. Based on
experience from other applications, we know that the problem size has to be signifi-
cantly larger in order to adequately measure sparse performance.

The second question can only be answered qualitatively for the BRIS reimplementa-
tion, since more than thirty years have passed since the original work. The NMF
models also have a wider scope. However, Axel Bring, who implemented the original
BRIS, was also project leader for the NMF based effort. The following are his time
estimates, assuming that both projects were carried out on modern platforms.

Table 6-1 summarizes the main steps that are involved in the development of a special
purpose application like BRIS, in both traditional and MSE implementations. No GUI
issues are regarded here, i.e., only IDA Solver is involved. The special purpose
application is assumed to have a traditional input file structure. The corresponding
IDA Solver input file will due to generality be slightly larger than the typical special
purpose counterpart, but it will also be more legible and provide better error feed-
back. Let us for the sake of simplicity assume that they are of comparable overall
quality.



57

A large part of the development effort lies naturally in the paper and pencil formula-
tion of the mathematical model. This work is the same for both approaches, assuming
that everything must be developed from scratch, and is not included below.

phase special
purpose
time in
weeks

IDA
time in
weeks

comment

design program
architecture

4 2 NMF model architecture in the IDA case.

design and imple-
ment a suitable
numerical method

8 0 Method is already available in the IDA
case

implement math
models as formal
code

4 4 More information must be input in the
NMF case, but the structure is given. In
the special purpose case, the model code
interacts with the solution procedure.

write I/O interfaces 12 0 I/O already available in IDA case

testing and tuning
of full implemen-
tation

10 4 Less new code to be tested in IDA case.
IDA tuning includes selection of suitable
methods.

documentation of
implemented
models

4 4 Written account of model equations.

development of
user’s manual

4 1 IDA Solver file structure is already
documented.

total time in man-
weeks

46 15

Table 6-1. Main phases in the development of a special purpose tool like BRIS



58

Figure 6-1. Main dialog box for Pilot application

So far, only a very simple GUI has been developed for the MSE implementation. The
interface, temporarily named Pilot, is intended for cooling load calculations in the
early stages of the building design process. It is based on default values for typical
Swedish designs of offices, hospitals and school rooms. Only about twenty parameters
are given by the user in a single dialog box (Figure 1-1). The development time for
such an interface in IDA Modeller is comparable to that of any good GUI develop-
ment platform. General IDA material is used only to organize case files and to display
simulation results.

The developed application has recently been shipped to some thirty industrial test
users, who have given positive feedback. The model accuracy, and thereby calculation
times, are perceived to be somewhat overly ambitious for early stage use. However,
the heat balance models are currently being equipped with a more comprehensive GUI
that will enable users to utilize the full capability of the underlying models.

In conclusion, for the BRIS case, the special purpose application is about three times
faster. Robustness is good for both implementations. Development time is approxi-
mately three times longer for the special purpose tool. If the better maintenance and
interoperability properties of the MSE implementation is taken into account, the
conclusion must be that the MSE approach is highly competitive.

6.1.1.2 Preserving Monolithic Tools
The third question is of a more speculative nature, and we have no first-hand experi-
ence of such projects. Several merger projects have been reported and still more are in
the planning stages. Haves has investigated performance of the (explicit) HBT2 model
in conjunction with HVACSIM+ [Haves 1989]. A merger of IBLAST and



59

HVACSIM+ has also been tried in a recent project [Metcalf 1995]. In the last few
years, the inclusion of SPARK as a separate module of PowerDOE (DOE-2 with new
GUI) for systems and plant simulation has been discussed . A plan to merge the two
monolithic thermal tools BLAST and DOE-2 has also been proclaimed [Crawley
1995].

Merger projects have also been carried out in order to couple modular programs with
special purpose monolithic tools for multizone airflow modelling. Coupling between
TRNSYS and COMIS is described in [Dorer 1994].

Large implementation as well as user training efforts have been invested in existing
monolithic tools. This is a natural motivation for the merger approach. Other reasons
behind merger projects might be a need to quickly compose a program for a specific
research task. In this case, the structure of the resulting program is less crucial, since
it is not intended for continued development.

In our opinion, a cost effective creation of an attractive simulation environment, for
long term satisfaction of developers as well as end users, through the merger ap-
proach is very unlikely. The reasons for this negative opinion are the following:

• No research has been presented that changes the long term development prospects
of the monolithic tools in a positive direction. Instead, results from the IDA, CLIM
2000, and ALLAN.Simulation projects prove that a truly modular approach is in-
deed a possible alternative. This means that the work of re-implementing the
monolithic tools in a modular architecture can only be postponed, not avoided.

• In order to create acceptable (not to mention desirable) structures for input data
and program code, the monolithic tools have to be severely rearranged or encap-
sulated. In addition, documentation must be revised to reflect the new implementa-
tion. The volume of such work is very difficult to predict and could easily turn out
to be of comparable order to a complete re-implementation project.

• User migration can be facilitated by import functions in a re-implemented tool. It
should therefore not be regarded as a fundamental motivation for retaining the
monolithic implementations.

• A dominant part of the value of an existing implementation lies in the knowledge
about the implementation, not in the actual source code. This knowledge is tied to
the (generally few) individuals that are truly familiar with the program. It is not
obvious that this knowledge can be retained in merger projects, unless the original
developers of both merged programs are directly involved in the new design.

Unless ignorance is the main reason for the instigation of non-research merger
projects, doubts regarding the performance of alternative techniques must prevail. In
this case, it seems rational to remove these doubts, before entering a worst-case
alternative route - to live with the obviously wanting existing technology. Further-
more, recent results on so called modal reduction techniques, indicate that better
performance can be attained in new implementations of building models than with any
existing tools [Cools 1989]. By surrendering a modest amount of generality, such
techniques can be utilized in re-implementation projects to compensate for the (small)



60

inherent performance penalty of the general approach. Such a project has been
reported for ALLAN.Simulation [Lefebvre 1995].

The current interest in merger projects reveals a pessimistic attitude towards the
future possibilities of building simulation.

6.1.2 Multizone Air Flow
IDA work on reimplementation of an existing multizone air flow program, Move-
comp, is reported in Papers 4 and 5, where also some conclusions are drawn. Here,
that discussion will be complemented with some additional material, and conclusions
with respect to the objectives of this thesis.

Figure 6-2. The GUI representation of a Multizone Air Exchange (MAE) model,
Building, with six floors and an attic. Models are built and represented hierarchi-

cally with subsystems within subsystems. Overview as well as detailed presentations
are available to accommodate users with varying levels of sophistication.

case connections nodes MC matrix IDA matrix IDA cut set

Clean Room 19   6   6     75   -

Building 289 48 50 1050 353

Table 6-2. Characteristic dimensions for the two sample problems



61

Table 6-2 summarizes some key numbers for two sample cases, Clean Room and
Building. The first case is a model of a sample clean room situation that is commonly
referred to in the literature. No ventilation system is modelled. Experiments on
variants of this model using IDA are reported in [Isfält 1996]. The Building model is
due to Herrlin [Herrlin 1992]. It contains an elaborate structure of zones, leaks, and
ventilation components, for a six floor building (cf. Figure 6-2).

In Table 4-1, the number of connections and nodes refer to the generic model types
that are introduced in Section 2 of Paper 5. The following two columns indicate the
sizes of the iteration matrix for Movecomp (MC) and IDA. The IDA matrix size
refers to “the compact method” in IDA terminology. This method is briefly described
in Section 5.3 of Paper 5 and more thoroughly accounted for in [Eriksson 1992]. The
matrix size is, for this strategy, given by the total number of NMF OUT variables. The
total number of LOC and OUT variables is a few times larger19. The IDA cut set column
indicates the result of an alternate sparse IDA method “upper triangular” which
attempts to minimize the size of the iteration matrix.

preparation  (man time) execution   (486 - 50)
case research assembly MC IDA

Clean Room day hour 1.4 sec     4.3 sec

Building month day 5.7 sec 600 sec

Table 6-3. Characteristic times for the two sample problems

Some characteristic times for the two cases are presented in Table 6-3. For the larger
case, the increase in problem size does indeed have a significant impact on execution
time. However, about 80 percent of this execution time has been devoted to trying to
find a minimal cut set. For a purely algebraic problem like this one, this is overly
ambitious, since only a total of about 10 to 20 iterations are required, each of which
takes about 6 seconds. A more optimal approach would be to terminate the cut set
algorithm at an earlier stage, i.e., to settle for a less optimal cut set.

Table 6-3 also gives rough estimates of the man time required for model preparation.
Research time refers to the gathering of physical data. This is today a purely manual
process of scanning a large number of research reports with measurement data, and in
a future scenario this could clearly be automated to a large degree. The assembly time
is the actual time for the interactive process of describing an IDA model.

The execution speed for multizone air flow problems is rarely a limiting factor in
practical work. With Movecomp, it is hardly noticed. However, for large cases, the
general approach is obviously wanting in this respect. Some methods to improve this
situation are discussed in Paper 5. A new variable partitioning scheme is currently
being implemented, but no results are available yet. A conservative estimate is that
IDA will remain on the order of ten times slower for large cases.

                                               
19 For equation based solvers, where NMF assignments are mapped to equations, the total problem
size for this case would be on the order of four thousand equations.



62

The robustness of the MAE models is good, and no initial guesses are required from
the user. A few problems remain with the current implementation of T-pieces. The
selected level of approximation includes functions with several inflection points, and
this occasionally gives convergence problems for odd cases. A less ambitious level of
approximation for these models is likely to resolve this problem.

Regarding the development time, we will separate GUI from NMF issues. Axel Bring
implemented the Movecomp program, in the mid eighties. The program takes its input
from a well structured input file, but no GUI is available. According to Bring, the
relative time estimates from the BRIS case, in Table 6-1, apply qualitatively here as
well. The calculation engine of the special purpose application takes roughly three
times longer to develop than a MSE based alternative.

No template application was available for the GUI. The current implementation is
used to some extent in Swedish industry, but remains rather rough, lacking, e.g.,
thorough on-line help. The implementation draws heavily on the available methods of
IDA Modeller. A rough estimate of the total GUI development time is 8-12 man-
weeks. No direct special purpose comparison is available, but it can safely be assumed
to be several times longer.

In conclusion, a GUI based tool for multizone air flow has been implemented. It
performs satisfactorily for normal industrial use. Some problems regarding execution
times for large cases remain. These problems have practical consequence only for
cases when repeated calculations are required. The development time is significantly
shorter than for a specialized approach.

6.1.3 Coupled Thermal and Fluid Flow Problems
The most significant advantage of the MSE based methodology is that models may be
mixed and matched arbitrarily. Thus, coupled problems require no special measures.
No direct comparison with existing tools have been performed for coupled problems.
The only well-known special purpose tool for building simulation that offers coupling
between thermal and flow problems is ESP-r [Clarke 1995]. In the following, we will
briefly summarize a selection of IDA application projects that have been carried out in
this category.

6.1.3.1 Fire Studies at SINTEF
Models for fire induced heat propagation between zones and in the ventilation duct-
work of offshore platforms have been developed at SINTEF in Norway [Kolsaker
1991]. Both buoyancy driven air flow and thermal storage in walls are modelled.

Studies have been performed for fire scenarios in both sleeping quarters and in
machine rooms far below sea level. The first few minutes of a fire are frequently
critical in terms of injuries and loss of lives due to smoke inhalation. Results show
among other things that fire dampers far away from potential fire locations, which is
common in current practice, are rather useless from this perspective. The tempera-
tures at the dampers do not reach the closing setpoint during the first few minutes of a
fire.



63

The models were developed with close contact between SINTEF and the client. NMF
was used as the sole mode of model documentation in the communication process.

6.1.3.2 Ventilation and Fire Studies in Traffic Tunnels
In tunnels designed for longitudinal ventilation, the traffic itself drives the ventilation
air under normal conditions. In accident or fire scenarios, fans play an important role.
Modelling of fires calls for coupled models of both air movement and heat transfer.
Client specific tools for this application have been developed by Bris Data AB in
Sweden [Malmström 1995].

The core model is a straight tunnel segment with a longitudinal air temperature
profile. Special difficulties in this model arise when the flow reverses direction, in the
fire segment, due to developing buoyancy forces. Additional NMF components enable
modelling of complex tunnel networks, with multiple loops, and their mechanical
ventilation system. Aside from the basic heat and massflow equations, relations are
also included for vehicle contaminant production and transport.

Only IDA Solver based applications have been developed so far, i.e., no GUI. How-
ever, non-expert clients use these to perform studies with several thousand equations.
Development times for these applications have been on the order of 6 man-weeks,
including documentation and testing, given the existence of a complete mathematical
model.

6.1.3.3 Natural Ventilation Studies
Active use of window ventilation was considered as an alternative to installing a new
mechanical ventilation system in a retrofit of a Swedish hospital. Traditional thermal
tools are unable to predict the effect of open windows, and therefore, the IDA models
for zone heat balances (cf. Section 6.1.1.1) were combined with multizone air flow
models, to study this case [Bring 1994]. The complex geometry of the window
openings were divided into small sections, in which powerlaw flow models were
applied.

The coupled models gave quick estimates of room temperatures in various ventilation
scenarios. The results were promising, and a decision was taken to move ahead with
the proposed low cost refurbishment.

6.1.4 Demand Controlled Ventilation
TRNSYS models for a demand controlled ventilation case have been developed and
exercised by Emmerich and coworkers [Emmerich 1994]. David Lorenzetti of MIT
combined a subset of the MAE models (cf. Papers 4 and 5) with some new controller
models to (loosely) replicate Emmerich’s models. The resulting model family is
presented together with some simulation results as a system example in Appendix 4 of
the NMF reference report [Sahlin 1996b].

The implementation was carried out during a three day visit at KTH, primarily to
study the model development process of IDA. The resulting implementation has not
yet been compared with the TRNSYS counterpart.



64

6.2 Remaining MSE Problems
In this section, we will discuss the main obstacles to a more wide-spread application
of MSE based technology. Some of these are of a practical nature, others will require
more research.

6.2.1 Affordable Quality Implementations
The most tangible problem is the shortage of affordable quality implementations.
Some of the available model-lab products are extremely expensive. IDA will soon be
released in a developer’s version, for generation of end-user tools. None of the
alternative products have such a version yet.

6.2.2 User Awareness and Training
Another obvious bottleneck regards the industrial awareness of the technology.
Currently, only a small fraction of potential users are aware of the merits of general
DAE modelling, and of the available tools in this field.

6.2.3 Efficiency on Large-Scale Problems
The computational efficiency is still inadequate on some problem types. As we have
seen in the previous section, the general problem formulation can in some cases lead
to radically larger problem sizes. An example of a common problem type that is likely
to be impractical to tackle with the current methods is duct or pipe sizing. Such a
program must be able to produce numerous solutions of pressure and flow for a large
network as the algorithm searches for an optimal system size.

No tests of the performance of general purpose sparsity utilization algorithms have
been performed within the IDA project on these problem types. However, it is
unlikely that they will perform adequately.

Although more work certainly is needed on general purpose sparsity utilization, we
feel that only a modest improvement is possible this way on single processor ma-
chines. There will always exist special problem structures that remain undetected by
the general purpose methods. A remedy to this problem would be to give explicit
problem dependent advice on a suitable computational procedure, i.e., to depart from
the general purpose approach in order to gain acceptable efficiency for special prob-
lems.

This may seem completely counterproductive, since the whole point is to apply
general purpose methods to special problems. However, adding extra information to a
model to facilitate efficient solution in a certain setting will not compromise its
usefulness in a general scenario. The extra information will then simply be ignored.

We believe that utilization of special problem structures will be an important area of
future MSE research. Some such work is already underway in the IDA project.



65

7. Summary and Conclusions

7.1 The IDA/NMF Design Profile
The key points of the IDA and NMF designs have been motivated. They are summa-
rized in the table below.

capability imple-
mented

sample problems or other motivation

Differential-algebraic
equations

yes heat exchange in zone; multizone air flow;
flow in pipe or duct networks

Input-output free models yes any potential-flow network, such as RC or
multizone air flow

Advanced algebraic
solution techniques

yes multizone air flow; refrigeration loops

Variable timesteps yes acceptable efficiency for many transient
problems, such as a heat balance zone model
with local cooling control

Range of sparsity utiliza-
tion algorithms

yes advanced algorithms necessary for, e.g., large
multizone models; simple or no sparsity
utilization option necessary for maximal
robustness during model development

Hysteresis yes thermostat or imperfect valve

Time and state events yes thermostat controlled system in variable
timestep environment

Delays no plug flow models for, e.g., pipes

Low-resolution PDE
modelling

yes 1D heat equation; tube immersed in slab or
semi-infinite space

High-resolution PDE
modelling

no CFD calculation of internal or external flows

Discrete time models no sampling controllers; weather data processing

Hierarchical modelling yes Structured large-scale models, e.g., a building
with a large number of similar floors, zones,
walls etc.



66

capability imple-
mented

sample problems or other motivation

Port level connections yes models can be interconnected without
detailed knowledge of underlying models,
e.g., pump outlet is connected with pipe
endpoint

Models with incrementable
number of ports

yes interactive building of, e.g., RC network,
thermal zone model, or multizone air flow
model

Fast development of end
user programs

yes enables development of end user applications
for limited market

Distribution of low-cost
(no compiler) applications
with ability to graphically
interconnect fixed sub-
models

yes multizone air flow; multizone thermal
program; duct or pipe sizing tool

Access to external model
libraries

yes necessary when project budget prevents
development from scratch

Access to CAD data from
end user programs

no to prevent trivial re-entry of data, e.g.,
building geometry

Access to foreign subrou-
tine based models with,
private memory handling,
events, and explicit
linearization

yes fast access to existing subroutine based
model libraries; ability to distribute models in
binary form for commercial purposes

Table 7-1. The IDA/NMF design profile

With exceptions as indicated in Table 7-1, the design profile has been implemented
and tested. Application projects have been summarized in all of the selected primary
target applications: Building Loads and Energy Calculation, Multizone Air Flow,
Coupled Thermal and Fluid Flow Problems, and Demand Controlled Ventilation.

7.2 Conclusions

7.2.1 Problem Review
The specific building simulation problem areas that were pointed out in Section 1.4
are repeated below, with corresponding conclusions.

1. The degree of model reuse in the field is low. Available mathematical models
are generally packaged in a form that is unsuitable for direct reuse in diverse
settings. Researchers produce validated and documented mathematical mod-



67

els, but these are then presented in a form which is either too general, i.e.,
written equations in a report, or too specific, i.e., intertwined with a solution
algorithm in a special implementation. The same problem applies to model
reuse between different projects that are carried out within the same group,
but with different simulation tools.

NMF provides a concrete alternative model formulation method that has been
proven to work on real-scale projects by independent users. Although further
development is going on, the present material is sufficient for the establishment
of model servers for both internal and external model communication.

2. With available techniques, the development cost of special purpose applica-
tion tools is too high. This in turn prevents exploitation of many potential
simulation problems, since the market for each individual special purpose
tool is small. The collective effect is that simulation is poorly utilized as a
general method.

IDA applications have been developed within a fraction of the normal cost.
This has enabled application development in narrow areas such as ventilation
of road tunnels.

3. Special purpose tools that are developed with available techniques are
inadequate for the end user in the following respects:

a) They offer no practical way for a user to adapt the tool, in an un-
planned way, to suit the problem at hand, i.e., the ability to re-
program is exclusive to the developers.

Developed IDA applications are completely transparent. Small changes
to existing models are easy to carry out by users with access to a de-
velopment version of the IDA system and with sufficient understanding
of the mathematical models. Such alterations have been performed on,
e.g., the Multizone Air Exchange application to study demand con-
trolled ventilation.

b) The mathematical models are documented separately, creating a dou-
ble source problem. The user is often in doubt regarding the corre-
spondence between the documentation and the implemented model.

IDA applications are normally delivered with the NMF source code.
This creates a way for users to investigate the equations that are being
solved. Additional documentation presents mathematical models also in
traditional form to provide overview and discussion. Clear references
are made in such text to the relevant NMF code.

c) They are generally too inhomogeneous in terms of user interaction
principles to allow a user quick transitions between different tools.
The required common principles shared by, e.g., two good Windows
applications, are too superficial to make it possible to have a large
number of different applications simultaneously active (mentally).

IDA Modeller provides a common framework for IDA applications.



68

Unfortunately, to date, only a few applications have been developed
that utilize this framework, and it is too early to estimate the impact on
end user productivity.

d) Only the subset of model quantities that have been selected by the de-
velopers is available for study. If for example wall temperatures are
interesting, they may not be possible to present.

Most implementations of the MSE approach, including IDA, enable
users to monitor every system variable.

4. Available MSEs are inadequate, both regarding the encompassed problem
types, and the possibility to distribute attractive special purpose applications.

Only IDA has been demonstrated to solve, e.g., multizone air flow and heat
balance problems with sufficient robustness. Although execution speed re-
mains an area of improvement, it is currently sufficient for industrial use in
many areas.

Distribution of MSE based special purpose applications has been demonstrated
in the scope of the IDA project. The only available alternative tool that has
been used in this way is TRNSYS. The modelling tools for TRNSYS are not
intended for delivery of special purpose tools; the solver is wanting with re-
spect to variable timestep integration and algebraic solution techniques.

7.2.2 Overall Conclusion
Several projects using TRNSYS, HVACSIM+, ALLAN.Simulation, and CLIM 2000
have shown that modular simulation environments are useful for a variety of building
simulation problems. Other MSEs, such as Dymola, have been applied to demanding
special problems, such as simulation of multibody systems, that previously have been
restricted to special purpose tools.

The present work on IDA and NMF serves to increase the range of applicability in
some key aspects,

• production of quality end user simulation tools at low cost,

• application to important typical building simulation problems, such as zone heat
balances and multizone air flow,

• establishment of base technology for large, program independent, model libraries.

With the exception of a few special situations, all continuous simulation problems of
the building sector can be handled by general purpose methods as offered by modular
simulation environments. The use of this technique is cost effective already in the
development of special purpose applications. The cost of long term maintenance of
developed tools can also be expected to be significantly lower.



69

7.3 Further Work
The rate of development of IDA and NMF is escalating rapidly. On-going work has
been briefly indicated throughout the text. The main areas of activity around the
original IDA group are briefly summarized below.

7.3.1 IDA Application Development
A group of companies20 is currently co-funding the development of a range of build-
ing simulation applications. The Pilot application, mentioned in Section 6.1.1.1, is the
first product of this work. Three larger additional applications are planned for calcu-
lation of energy and loads, simulation of typical control problems, and for system
selection support. All applications are developed in both Swedish and English. The
total effort is approximately ten man-years and it is scheduled to be completed at the
end of 1997.

7.3.2 IDA Modeller
IDA Modeller was originally developed on Apollo workstations using non-standard
user interactions principles. The original version was ported to Windows in 1992. The
implementation is currently being revised

• to harmonize better with the Windows environment,

• to include features that were not originally foreseen,

• to better utilize the Common Lisp Object System, and

• to provide better quality graphics.

7.3.3 IDA Solver
Several projects are underway to further improve IDA Solver.

• Discrete time objects are under implementation.

• A new problem specific variable partitioning scheme is under development.

• Methods for re-scaling of variables and equations are being investigated.

• Better support for application encapsulation in Windows Dynamic Link Libraries is
under implementation.

7.3.4 IDA NMF Translators
A new family of IDA NMF translators have been developed during the last year.
These translators have computer algebra capability, and this is currently applied to
automatic generation of analytical Jacobian routines. The new translators will also be
integrated into IDA Modeller.

7.3.5 General NMF Research
The suggested future work of Papers 6 and 7 is underway. This will provide a better
foundation for the establishment of NMF model servers.

                                               
20 A consortium of 28 companies that are listed on the inside of the front cover.



70

Acknowledgments
Axel Bring has been a friend, partner, and mentor for the last nine years. Without you,
I would never have endured. With you, it was worth it.

While Axel was my accomplice, my dear wife Gun Rudquist has been an innocent
victim. She is no fan of IDA. She even fails to see the beauty of NMF! In fact, she
doesn’t much enjoy differential-algebraic modelling of piecewise continuous systems
at all. No, biological diversity, sustainable agriculture, and such is what she wastes her
talents and time on. In spite of all this, she and our daughters, Hanna and Kajsa, have
supported me - along with my strange priorities.

The present and past IDA team have on countless occasions put in that extra bit of
effort, especially to let me enjoy this selfish exercise. The old gang that Axel and I
have enjoyed to work with are Lars Eriksson and Magnus Lindgren. Newcomers are
Pavel Grozman, Harald Hermansson, Wille Nordqvist, Alexander Shapovalov, and
Mika Vuolle.

The list of people without whom IDA never would have come true is long. Their
continued support through long stretches of poor results, and jealous plots against us,
has made all the difference. First on this list is Tor-Göran Malmström, who many
times has endangered his reputation for our sake. Former and present heads of ITM
Gustaf Söderlind and Uno Nävert are also on the list. Engelbrekt Isfält has unselfishly
pointed many clients in our direction. Ingemar Nordenadler, president of the IDA
consortium, has similarly acted on our behalf. Several other partners in the IDA
consortium have also joined primarily to support rather than to gain.

The early IDA users, who have put up with using early and incomplete versions of the
code, also deserve our gratitude. First among them is our true pioneer, Kjell Kolsaker,
who has worked wonders with IDA. Secondly, Ingegerd Ljungkrona, who also has
shown great confidence in our work from the very early days. The same is true for Jan
Akander, Dave Lorenzetti, and Niklas Björsell.

Kjell Kolsaker, Ed Sowell, Francis Lorenz, Jean-Michel Nataf, Dave Lorenzetti, Les
Norford, Roger Pelletret, Alexandre Jeandel, Chip Barnaby, Phil Haves, and many
others have been valued scientific discussion partners and NMF supporters.

Axel Bring, Wille Nordqvist, Bo-Christer Björk, Per Isaksson, Gudni Johanneson, and
all others who have given valuable comments on the manuscript are gratefully ac-
knowledged.

Finally, I want to thank the project funders (listed on the inside of the front cover),
particularly the Swedish Council for Building Research that has provided continuous
support throughout the project. I have personally also been honored by the Royal
Institute of Technology in the form of a so called “excellenstjänst,” and by a stipend
from Stockholms Byggnadsförening.



71

References

Akander, J., 1995, Efficient Modelling of Energy Flow in Building Components,
Div. of Building Technology, KTH, Stockholm, Sweden

Amor, R., J. Hosking, 1995, Mappings for Integrating Design Tools, Conference
proc. Building Simulation ‘95, IBPSA, Madison, WI, USA, Aug. 1995

Andersson, M., 1990, An Object-Oriented Language for Model Representation,
Licentiate Thesis, Dept. of Automatic Control, LIT , Box 118, 221 00 Lund, Sweden,
May 1990

Andersson, M., 1994, Object-Oriented Modeling and Simulation of Hybrid Systems,
PhD thesis, Dept. of Automatic Control, LIT , Box 118, 221 00 Lund, Sweden, Dec.
1994

ASEA, 1983, SANDYS - Användarhandledning, ASEA Research & Innovation,
S12013-AH01, 1983

Augenbroe, G., 1993, COMBINE Final Report, EU-DG XII JOULE Report, 1993

Augenbroe, G., 1995, COMBINE 2 Final Report, EU-DG XII JOULE Report, 1995

Augustin, C.D.C., M.S. Fineberg, B.B. Johnsen, R.N. Linebarger, F.J. Sannson,
J.C. Strauss, 1967, The SCi Continuous System Simulation Language (CSSL),
Simulation, 9, pp. 281-303

Björk, B.-C., 1995, Requirements and information structures for building product
data models, PhD thesis, VTT Publications 245, Technical Research Centre of
Finland, ISSN 1235-0621

Bonin, J.L., J.Y. Grandpeix, J.L. Joly, A. Lahellec, V. Platel, M. Rigal, 1989,
Multimodel Simulation: the TEF Approach, Proc. European Simulation Conference,
Rome

Bonneau, D., F.X. Rongere, D. Covalet, B. Gautier, 1993, CLIM 2000 - Modular
Software for Energy Simulation in Buildings, Conference proc. Building Simulation
‘93, IBPSA, Adelaide, Australia, Aug. 1993

Brenan, K.E., S.L. Campbell, L.R. Petzold, 1989, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, North Holland

Bring, A., 1991a, IDA SOLVER, a Programmers's Guide, Research Report, Dept. of
Building Services Engineering, Royal Institute of Technology, Stockholm

Bring, A., 1991b, IDA SOLVER, a User's Guide, Research Report, Dept. of Building
Services Engineering, Royal Institute of Technology, Stockholm

Bring, A., I. Nordenadler, E. Isfält, 1994, Simuleringsprogrammet IDA öppnar
fönstret för ny teknik, Energi & Miljö, 5-6/94



72

Bring, A., P. Sahlin, 1993, Modelling Air Flows and Buildings with NMF and IDA,
Conference proc. Building Simulation ‘93, IBPSA, Adelaide, Australia, Aug. 1993

Bring, A., L. Eriksson, H. Hermansson, M. Lindgren, P. Sahlin, 1995, IDA - an
Environment for Building and Energy Systems Simulation, Conference proc. Building
Simulation ‘95, IBPSA, Madison, WI, USA, Aug. 1995

Brown G., 1962, BRIS - Method for digital computer calculation of long and
shortwave radiation in rooms as well as cooling and heating needs, KTH, Stock-
holm, 1963

Brown, G., 1990, The BRIS Simulation Program for Thermal Design of Buildings
and Their Services, Energy and Buildings, 14 (1990) 385-400

Brück, D.M., 1987, Implementation Languages for CACE Software, Dept. Auto-
matic Control, LTH, Lund, Sweden, Sept., 1987

Buhl, W.F., E.F. Sowell, J.M. Nataf, 1989, Object Oriented Programming, Equa-
tion Based Submodels, and System Reduction in SPANK, Building Simulation '89
Conference, Vancouver, Canada, June, 1989

Buhl, W.F., E. Erdem, F.C. Winkelmann, E.F. Sowell, 1993, Recent Improve-
ments in SPARK: Strong Component Decomposition, Multivalued Objects, and
Graphical Interface, Conference proc. Building Simulation ‘93, IBPSA, Adelaide,
Australia, Aug. 1993

Charlesworth, P., et al., 1991, The Energy Kernel System, Proceedings, Building
Simulation '91, Nice, France, Aug. 1991

Clark, D.R., 1985, HVACSIM+ Building Systems and Equipment Simulation
Program - Reference Manual, National Institute of Standards and Technology,
Washington D.C., 1985

Clarke, J.A., 1986, The Energy Kernel System, Conference proc. System Simulation
in Buildings, Liege, Belgium, Dec., 1986

Clarke, J.A., W.M. Dempster, C. Negrão, 1995, The implementation of a compu-
tational fluid dynamics algorithm within the ESP-r system, Conference proc. Building
Simulation '95, IBPSA, Madison, WI, USA, Aug. 1995

Clarke, J.A., E.F. Sowell, the Simulation Research Group, 1985, A Proposal to
Develop a Kernel System for the Next Generation of Building Energy Simulation
Software, Lawrence Berkeley Laboratory, Berkeley, CA, Nov. 4, 1985

Clarke, J.A., D.F. Mac Randall, 1993, The Energy Kernel System: Form and
Content, Conference proc. Building Simulation ‘93, IBPSA, Adelaide, Australia, Aug.
1993

Cools, C., R. Gicquel, F.P. Neirac, 1989, Identification of Building Reduced
Models. Application to the Characterization of Passive Solar Components, Int. J.
Solar Energy, 1989, Vol. 7, pp. 127 - 158



73

Crawley, D.B., L. Lawrie, 1995, e-mail newsletter, US Depts. of Energy and
Defence, Sept., 1995

Dorer, V., Weber A., 1994, Multizone Air Flow Model COMVEN as Type 57 for
TRNSYS, IEA-ECB Annex 23 ‘Multizone Air Flow Modelling’ Technical Note, June,
1994

Dubois, A.M., 1988, MODEL-BASED COMPUTER AIDED MODELLING: the new
perspectives for building energy simulation, communication from CSTB, B.P. 21,
06561 VALBONNE Cedex, France

Elmquist, H., 1978, A Structured Model Language for Large Continuous Systems,
Phd thesis, Dept. of Automatic Control, LIT , Box 118, 221 00 Lund, Sweden

Elmqvist, H., 1986, LICS: Language for Implementation of Control Systems, Dept.
of Automatic Control, LIT , Box 118, 221 00 Lund, Sweden

Elmqvist, H., 1993, Object-Oriented Modeling and Automatic Formula Manipula-
tion in Dymola, proc. SIMS ‘93, Scandinavian Simulation Society, Kongsberg,
Norway, June, 1993

Emmerich, S.J., J.W. Mitchell, W.A. Beckman, 1994, Demand-Controlled
Ventilation in a Multi-Zone Office Building, Indoor Environ 1994:331-340

Eriksson, L.O., 1983, MOLCOL - An Implementation of One-leg Methods for
Partitioned Stiff ODEs, Report TRITA-NA-8319, Royal Institute of Technology,
Stockholm

Eriksson, L.O., 1991, Personal communication

Eriksson, L.O., G. Söderlind, A. Bring, 1992, Numerical Methods for the Simula-
tion of Modular Dynamical Systems, Research Report, Swedish Institute of Applied
Mathematics, Gothenburg

Escudié, J.C., L. Laret, 1994, CSTBât: A Simulation Tool for Building and Heating
System Analysis within TRNSYS, Proc. 4th intl. conf. System Simulation in Buildings,
Liege, Belgium, Dec., 1994

Feustel, H.E., A. Rayner-Hooson, 1990, COMIS Fundamentals, Lawrence Berkeley
Laboratory, CA,

Grozman, P., P. Sahlin, 1996, ASHRAE RP-839 NMF Translator - User’s Guide,
ASHRAE Inc. and Bris Data AB

Haves, P., 1989, personal communication

Haves, P., L. Norford, 1996, Development of a Simulation Testbed to Evaluate
Control Algorithms and Strategies for Variable-Air-Volume Ventilation Systems,
Research report ASHRAE 825-RP, draft version, MIT, 1996



74

Herrlin, M.K., 1992,  Air-Flow Studies in Multizone Buildings - Models and Appli-
cations, PhD thesis, Bulletin no. 23, Building Services Engineering, KTH, Stockholm,
Sweden

ISO TC 184, 1993, The STEP Standard, draft international standard DIS 10303,
continuously since 1992 published in several different parts

IEA B&CS Annex 1, 1981, Comparison of Load Determination Methodologies for
Building Energy Analysis Programs, U.S. Department of Energy, Jan., 1981

Isfält, E., B. Ljungqvist, B. Reinmüller, Simulation of Airflows and Dispersion of
Contaminants through Doorways in a Suite of Cleanrooms, submitted to European
Journal of Parenteral Sciences

Jeandel, A., F. Favret, E. Lariviere, 1993, ALLAN.Simulation - a General Software
Tool for Model Description and Simulation, Conference proc. Building Simulation
‘93, IBPSA, Adelaide, Australia, Aug. 1993

Jeandel A., Ph. Ravier, A. Buhsing, 1994a, ULM : reference guide, GDF internal
report M.DéGIMA.GSA1205 , 1994

Jeandel A., Ph. Ravier, A. Buhsing, 1994b, ULM : user´s guide, GDF internal
report M.DéGIMA.GSA1206, 1994

Jochum, P., 1994, Einzatz der Simulationsumgebung Smile zur Simulation solar
unterstützter Heizsysteme, Institut Für Heizsysteme, TU-Berlin, 1994

Jochum, P., M. Kloas, 1993, The Dynamic Simulation Environment Smile, Institute
of Energy Engineering, TU-Berlin, 1993

Judkoff, R., J. Neymark, 1994, Building Energy Simulation Test (BESTEST) and
Diagnostic Method, International Energy Agency through NREL, NREL/TP-472-
6231

Klein, S. A., W. A. Beckman, J. A. Duffie, 1976, TRNSYS - a transient simulation
program ASHRAE Trans, 1976, VOLUME 82, Pt. 2

Kolsaker, K., 1991, An NMF-Based Component Library for Fire Simulation,
Proceedings, Building Simulation '91, Nice, France, Aug., 1991

Kolsaker, K., 1994a, NEUTRAN-supported NMF Enhancements, presented to the
TC 4.7 NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Kolsaker, K., 1994b, Simpler NMF Description of Advanced Models Using Hierar-
chical Modelling and Data Abstraction, presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE annual meeting 1994

Kolsaker, K., 1994c, NEUTRAN - A Translator of Models from NMF into IDA and
SPARK, Proceeding of the BEPAC conference, BEP'94, York, U.K.



75

Lefebvre, G., J.-M. Nataf, A. Oulefki, A. Jeandel, E. Givois, P. Briand, O. Noel,
1995, Generating Reduced Modal Models of Buildings for ALLAN.Simulation+,
Conference proc. Building Simulation '95, IBPSA, Madison, WI, USA, Aug. 1995

Lindgren, M., P. Sahlin, 1992, IDA Modeller - A Users's and Programmer's Guide,
Research Report, Swedish Institute of Applied Mathematics, Gothenburg

Ljungkrona, I., 1994, Thermal Room Model for Dynamic Performance Analysis of
Conditioned Rooms - Description and Validation, Licentiate thesis, Dept. Building
Services Engineering, Chalmers, Gothenburg, Sweden, 1994

Lomas, K.J., H. Eppel, C. Martin, D. Bloomfield, 1994, Empirical validation of
thermal building simulation programs using test room data, Internation Energy
Agency B&CS Annex 21, 1994

Lorenz, F., 1987, Reflections about Representation Methods, proc. workshop on the
future of building energy modelling, Ispra, Italy, Nov. 1987, CEC EUR 11603 EN
PREPRINT, May 1988

Lorenz, F., 1990, Brief Description of the MS1 (Modelling System 1) Project,
private communication

Lorenz F., 1991, Modelling Platform with Multiple Representation Formalisms,
Proc. of BS'91 IBPSA Conf., Nice, France, Aug., 1991

Lorenz, F., 1994a, personal communication

Lorenz, F., 1994b, Comments on the Neutral model Format, presented to the TC 4.7
NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Lorenz, F., 1994, A multiformalism modelling approach using Bond Graphs,
Networks and Block Diagrams together, keynote lecture, Eurotherm Seminar 36,
Poitier Futuroscope, Sept. 21-23, 1994

Malmström, T.-G., A. Bring, 1995, A Modular Simulation Program for Road
Tunnel Ventilation, KTH, 1995, submitted to Tunneling and Underground Space
Ventilation

Mattsson, S.E., 1986, On Differential/Algebraic Systems, Research Report CODEN:
LUTFD2/(TFRT-7327)/1-026, Dept. of Automatic Control, Lund Institute of Tech-
nology, Sept., 1986

Mattsson, S.E., 1989, On Modelling and Differential/Algebraic Systems, Simulation,
1989, 52, No. 1, 24-32

Mattsson, S.E., M. Andersson, 1992, The Ideas behind Omola, proc. 1992 IEEE
Symposium on Computer-Aided Control System Design, pp. 23-29

Metcalf, R.R., R.D. Taylor, C.O. Pedersen, R.J. Liesen, D.E. Fisher, 1995,
Incorporating a Modular System Simulation Program into a Large Energy Analysis



76

Program: the Linking of IBLAST and HVACSIM+, Conference proc. Building
Simulation '95, IBPSA, Madison, WI, USA, Aug. 1995

Nakhle M., P. Roux, 1986, NEPTUNIX : an efficient tool for large size systems
simulation, Second International Conference on System Simulation in Buildings 1986,
Liege, Belgium

Nataf, J.-M., 1995, Translator from NMF to SPARK, Conference proc. Building
Simulation ‘95, IBPSA, Madison, WI, USA, Aug. 1995

Ohlsson, B., A. Persson, 1991, Sandys - a simulation program for electrical circuits
and systems, ABB Review 5/91

Otter, M., 1992, DSblock, a neutral description of dynamic systems, Open CACSD
Electronic Newsletter, 1, 3 (available at ftp://mailbase.ac.uk/pub/lists-a-e/engineering-
cace)

Otter, M., H. Elmqvist, F.E. Cellier, 1993, Modeling of Multibody Systems with the
Object-Oriented Modeling Language Omola, proc. NATO/ASI, Computer-Aided
Analysis of Rigid and Flexible Mechanical Systems, Troia, Portugal, June, 1993

Park, C., D. Clarke, G. E. Kelly, 1985, An overview of HVACSIM+, a dynamic
building/HVAC/control systems simulation program, Proceedings 1st. Annual
Building Energy Simulation Conference, Seattle, WA, 1985

Pelletret, R., 1994a, Personal communication

Pelletret, R., S. Soubra, 1994b, Standardizing Model Documentation - The
PROFORMA Experience, presented to the TC 4.7 NMF Ad Hoc Subcommittee at
the ASHRAE winter meeting 1994

Pelletret, R., S. Soubra, W. Kielholz, 1995, Transferring Simulation Techniques to
End Users - Application to TRNSYS, Conference proc. Building Simulation ‘95,
IBPSA, Madison, WI, USA, Aug. 1995

Perkins, J.D., R. Sargent, 1982, SPEEDUP: A Computer Program for Steady-State
and Dynamic Simulation and Design for Chemical Processes, AIChE Symposium
Series, 78:214, pp. 1-11

Perry, D.L., 1991, VHDL, McGraw-Hill

Petzold, L.R., 1982, A Description of DASSL: A Differential/Algebraic System
Solver, Proceedings of IMACS World Congress, Montreal, Canada, 1982

Rongere, F.-X., W. Ranval, 1992a, A Modelling Method for Systems in Building
Energy Simulation: MEMPHIS, Electricite de France, April 1992, HE 12 W 3340

Rongere, F.-X., 1992b, personal communication

Sahlin, P., 1991, IDA - a Modeling and Simulation Environment for Building
Applications, ITM report 1991:2, Dec., 1991



77

Sahlin, P., 1994, The Neutral Model Format - a Possible Starting Point for a
Standardization Process, Progress report 1994 of the CEC SiE-WG 8467, Brussels,
Belgium

Sahlin, P., 1996a, NMF Handbook - an Introduction to the Neutral Model Format,
Research Report, Dept. Building Sciences, KTH, Stockholm, Sweden, Feb., 1996
(available at  ftp://urd.ce.kth.se/pub/reports/handbook.ps)

Sahlin, P., A. Bring, 1993, Applying IDA to Airflow Problems in Buildings, ITM
report 1993:3

Sahlin, P., A. Bring, 1995, The IDA Multizone Air Exchange Application, Bris Data
AB and Div. of Building Services Engineering, KTH, 1995

Sahlin, P., A.Bring, E.F.Sowell, 1996b, The Neutral Model Format for Building
Simulation, Version 3.02, Report, Dept. of Building Sciences, KTH, Stockholm,
1996 (available at  ftp://urd.ce.kth.se/pub/reports/nmfre302.ps)

Shapovalov, A., 1996, personal communication

Sowell, E.F., K. Taghavi, H. Levy, D.W. Low, 1984, Generation of Building
Energy System Models, ASHRAE Transactions, Vol. 90. Part 1, 1984

Sowell, E.F., W.F. Buhl, A. E. Erdem, F.C. Winkelmann, 1986, A Prototype
Object-based System for HVAC Simulation, Proceedings of the Second International
Conference on System Simulation in Buildings, Liege, Dec., 1986

Stangerup, P., 1988, Efficient Implementation of a Description Language for
Thermal Simulators, Proc. 3rd European Symposium of Space Thermal Control &
Life Support Systems, Noordwijk, The Netherlands, Oct., 1998

Stangerup, P., 1991a, Requirements for a General Purpose Modelling and Simula-
tion Language, proc. 1991 European Conf. on Circuit Theory and Design, Copenha-
gen, Denmark, Sept, 1991

Stangerup, P., 1991b, ESACAP: A Simulation Program and Description Language
for Interdisciplinary Problems, proc, 1991 European Simulation Multiconference,
Copenhagen, Denmark, June, 1991

Söderlind, G., J. Oppelstrup, 1984, The Modern Process Simulation Environment:
Modelling and Numerical Methods, ITM internal report

Söderlind, G. 1985, Numerical Computation and Data Communication in Modular
Simulation, ITM internal report

Söderlind, G., L.O. Eriksson, 1985, Modular Simulation: Theoretical Aspects and
Numerical Experiments, ITM internal report

Söderlind, G., L.O. Eriksson, 1986, On the Design of a Modular Simulation
System, ITM internal report



78

Vuolle, M., 1996, personal communication

Walton, G., 1994, CONTAM93 - User Manual, NISTIR 5385, National Institute of
Standards and Technology

Wernstedt, G., 1995, Användarkrav för datorberäkningsprogram för byggnader,
EVR & Wahlings, Stockholm, Sweden, 1995

Yi Jiang , Zhenxi Xu, Feng Chen, 1994, TUHVAC - an object oriented computer
software for HVAC design, analysis and simulation, preprints of the 4th Intnl. Conf.
on System Simulation in Buildings, Dec, 1994, Liege, Belgium



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/1

MODSIM

a Program for Dynamical Modelling and Simulation
of Continuous Systems

Per Sahlin

The Swedish Institute of Applied Mathematics1

Box 26300
100 41  STOCKHOLM, SWEDEN

Abstract

A software package for continuous simulation of component based systems, Modsim,
is presently under development at the Swedish Institute of Applied Mathematics
(ITM). This package is introduced along with the concept of dynamical modelling and
simulation (DMS).

Most existing general purpose simulation tools provide insufficient support for the
mathematical modelling of physical systems. Usually, the system is described in terms
of equations or assignment statements and all users must understand and interact with
the simulated system at this low level of abstraction. Contrary to this, DMS programs
allow certain classes of users to describe systems at a higher level. Components are
the basic building blocks rather than equations. A component in this sense is a
physical subsystem, such as a heatpump or the condenser of a heatpump. Component
parameters are given from an engineering rather than from a mathematical point of
view.

Several present component based packages require predefined signal directions to and
from an individual component. Some of the limitations with this input/output
approach is pointed out briefly and the possibility of building a system without these
limitations is discussed.

The Modsim system is built around a Fortran solver, Modsol, for the integration of
differential algebraic systems of equations (DAE) with the particular structure arising
from signal direction independent component modelling. The interactive parts of
Modsim are written in Lisp and rely heavily on the graphical communication tools of a
modern low-end workstation. Modsim is not bound to a particular field. Application
dependent parts may be designed separately, thus allowing the core of the system to
be used in several fields. ITM's foremost concern is with this core but application
dependent parts are written concurrently in cooperation with researchers from the
building energy simulation field.

An in-house demonstration version of the program, with a small component library, is
planned for the summer of 1988.

                                               
1 The Swedish Institute of Applied Mathematics (ITM) is an independent research organization

supported by the Swedish National Board for Technical Development (40%) and by a group of
Swedish companies (60%). This work was supported in part by the Swedish Council for Building
Research under contract no. 870299-8.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/2

1      INTRODUCTION

New workstation hardware with powerful processors and advanced graphical
capabilities will put new requirements on the next generation of simulation software.
Simulation tools will no longer be exclusively used by specially trained computational
engineers. The designers of tomorrow will want to user their 10 MIPS of desktop
processing power for something more than computerized drawing boards.

Most simulation papers are written from the perspective of a single application field.
In this paper, the focus will be on practical design tools for the simulation of
dynamical systems from a general perspective. We focus on simulation tasks where
application dependent parts should be added last, not first. With this approach, it is
possible to avoid many of the problems with "independent groups creating non-inter-
changeable software, continually re-inventing different variants of the wheel", quoting
J.A. Clarke, a visionary in the field of building design [1]. For applications such as
rigid body mechanics and electrical network analysis – where a well defined formalism
for generating the governing equations exist – special purpose systems may be more
advantageous.

At ITM the objective is to bring forth simulation software which can be of use in
several application fields. The programs should, however, not be regarded as finished
products but rather as raw material for such.

The present work deals with modular dynamical systems, i.e. systems that naturally
decompose into subsystems. The dynamics of the systems under consideration are
described by sets of nonlinear ordinary differential and algebraic equations (DAE).
(PDE:s are reduced to ODE:s by discretization.) Some discontinuities in the system
description will be allowed such as those which are introduced by automatic control-
lers, but inherently discontinouos systems (event driven systems) such as the product
line of a manufacturing plant, are excluded.

Physical systems that fall into the category under consideration occur in several fields.
The following applications are those which have been touched upon by ITM in the
last few years:

• Process industry. ITMs work on modular simulation started with a study of
simulation methods for oil-gas separation plants. The study included an evalu-
ation of existing "dynamical flowsheeting" programs and since they proved
inadequate from a numerical point of view, a new numerical algorithm was
proposed [9–11, 13]. The Modsim project is based on a further developed ver-
sion of this algorithm.

• Energy and temperature simulation in buildings and their HVAC systems. This is
the current test application for the Modsim project. ITM cooperates actively with
researchers in this field for the development of application dependent parts.

• Dynamical heat pump simulation. A pilot programming project, Heatsys, was
carried out by the author [7].



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/3

Many additional items should be included in a complete list of potential applications.

In the first section of this paper the concept of Dynamical Modelling and Simulation
(DMS) will be defined and discussed. The remaining sections are devoted to the
introduction of Modsim – an attempted DMS program.

2      DYNAMICAL MODELLING AND SIMULATION

Simulation tools can be used for various aspects of physical system development and
maintenance. For some aspects the simulation model may be more or less fixed. The
basic interconnection structure of the submodels may at least be fixed since most of
the necessary model changes will occur within the submodels. Examples range from
operator training and operability studies to monitoring of unaccessible process varia-
les by interconnected real-time simulation models.

Here, our primary focus will be on simulation tools for the design phase. The phase
when nothing yet is clear, not even the basic structure of the desired system and when
the possibility of quick evaluation of different ideas is crucial. This is when a powerful
simulation tool might make the difference for a creative engineer who is trying to
convince his superiors of the benefits of a slightly unconventional solution.

The design tools we are discussing must do more than just the actual simulation. They
must form an environment where strong support is given for the modelling process as
well. The system model should obviously be time dependent or dynamic and since also
the actual modelling should be dynamic (in the sense active), we propose to call this
class of tools Dynamical Modelling and Simulation (DMS) programs.

Some requirements of such a simulation environment or DMS program is discussed in
the following subsections.

2.1     The User Interaction

One ambition with DMS programs is to bring the power of simulation to wider
circles. A DMS user should not necessarily be identical with a skilled mathematical
modeller. Any engineer with a solid physical understanding of a system should also be
able to simulate the system. This puts extreme requirements on the man-machine
interaction and on the robustness of the numerical methods used.

A key issue for user interaction is data abstraction. Subdivision into components
simplifies the understanding of complicated systems. The graphical representation of
the simulated system must take full advantage of this. The user should only see the
information which is relevant to his problem and to his level of sophistication. Major
contributions to this field have been made by H. Elmquist, S.E. Mattson et al [2, 6].

The basic building blocks in the modelling process should be components rather than
equations. The components should in addition be characterized in a language which is



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/4

natural for the user – with familiar parameter names – rather than in terms of abstract
mathematical coefficients. Furthermore, the underlying mathematical model should
behave in a physically correct way under extreme conditions or the user should at
least be signaled when the model is operating out of its domain of validity.

The user should be able to follow the progress of the simulation on the screen and
have the means of stopping it at any time. Iterative model development with separate
simulation of subsystems should be supported and the transition between simulation
and modelling mode should be virtually instantaneous.

If the resulting mathematical model becomes ill-posed or unsolvable, a message
should be issued which if possible indicates recommended courses of action.

The mathematical model will contain algebraic as well as ordinary differential equa-
tions. Unfortunately, DAE systems are often difficult to solve by the numerical
methods of today. Seemingly innocent problems can be impossible to integrate even
though they are well-posed in a mathematical sense. Mathematicians say these prob-
lems have high index. As of today, there is not even an algorithm for safe diagnosis of
this condition. This is a serious obstacle on the road to a true DMS program, which of
course at least should be able to predict the problem and preferably also solve it
automatically. These problems and their relation to mathematical modelling are sur-
veyed in Mattson [5].

2.2      The Modelling Method

The mathematical model of the simulated system must be general enough to allow
several different combinations of given (input) and calculated (output) variables. An
analogy can be drawn to an equation, where any variable can be solved for as long as
the remaining variables are given. Traditionally, submodels in simulation programs
have been identical with subroutines. For subroutines, certain arguments are given
(the input to the submodel) and the the remaining arguments are returned (the output
from the submodel). If a user would like to answer the reverse question "What input
will result in this output?", he will be forced to either rewrite the subroutine or to run
the subroutine over and over and slowly find an approximate solution. This is clearly
an unacceptable state of affairs for a DMS program, where the submodels in the
library must be general enough for both questions. Indeed, the user should not even
have to be skilled enough to rewrite the subroutine or run it repeatedly. The only way
to attain this desirable flexibility is to model the submodel as a system of equations
rather than as a series of assignment statements (a subroutine). A system of equations
where any chosen set of variables can be solved for, as long as the problem is still
well-posed.

Another requirement on a DMS program is that submodels should be arbitrarily
connectable. This also requires equation rather than assignment modelling. Let us
illustrate this by looking at the assignment modelling of a resistor.

i1:= (u2 – u1) / R

i2:= –i1
(1)



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/5

The fact that this is a purely algebraic model is no restriction here. Each terminal, 1
and 2, carries two variables, i and u, current and voltage. Let i1 and i2 be the output
and u1 and u2 be the input, as suggested by the assignments.

Now suppose two such resistors, r1 and r2, are connected in series. The resulting
coupling assignments are, using dot notation:

r1.i2:= –r2.i1

r1.u2:= r2.u1
 . (2)

The first assignment in (2) is a relation between output variables and the second one
consists of input variables only. We clearly have a problem. In order to perform the
calculation, there must be one input – receiving a value from an output – in each
assignment.

In principle, the problem could be temporarily solved by choosing the variables
differently, so that the input would match the output. But this would only lead to
further problems. If the designation of input and output variables is done ahead of the
interconnection phase, two separate assignment models of the same resistor are
required in order to make all interconnections possible. The additional one is:

i1:= –i2

u1:= u2 + R* i2
 . (3)

For multi-terminal components, even more models may be required. And for every
major change, all the separate models for each component may have to be changed.
The input-output strategy is clearly impractical.

2.2.1     Symbolic manipulation

One alternative approach is to model submodels as systems of equations and treat
them with computerized paper-and-pencil methods, i.e. write down all the equations
including coupling equations and simplify.

The above example can be written:

R i u u

i i

R i u u

i i

i i

u u

1 11 12 11

12 11

2 21 22 21

22 21

12 21

12 21

= −
= −
= −
= −
= −
=















 , (4)

where an extra index has been added for the component number. The system (4)
simplifies to e.g.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/6

( ) ( )i u u R R

i i
11 22 11 1 2

22 11

= − +
= −





(5)

The automatic symbol manipulation can be carried out by using known techniques.
This way a significantly smaller system of equations can be obtained, consisting of
interesting entities only. This will often – but not always – make the numerical solu-
tion less demanding in terms of processing power. A drawback is that any changes in
the equation system structure, e.g. changing the model of one of the submodels, usu-
ally necessitates a new symbolic reduction. This is normally a quite costly process.

2.2.2     Residual Form

Yet another alternative is to represent the equations in residual form and solve the
whole system numerically as it is.

0

0

0

0

0

0

= − + −
= +
= − + −
= +
= +
= −















R i u u

i i

R i u u

i i

i i

u u

1 11 12 11

12 11

2 21 22 21

22 21

12 21

12 21

(6)

The resulting system matrix will be sparse and this method is likely to be competitive
only if the sparsity is utilized. One advantage is that changes in the system structure
only require rewriting the system matrix. Another one is that the method does not
require any automatic symbol manipulation, and hence it is more straightforward to
implement.

Both of the latter methods and combinations of them represent interesting alternatives
for DMS programs. They must be implemented, tested and compared in several
development projects. Prior to this, it is too early to say which one that will ultimately
prove the most effective. It is likely that the optimal choice depends on the application
as well as on the mode of operation, i.e the amount of iteration between modelling
and simulation which is to be done. This has been observed in packages for the
simulation of rigid body mechanics, where successful implementations of both
approaches are in use today.

3      MODSIM – A DMS PROJECT

The starting point of the Modsim project was the conception of an efficient numerical
algorithm for the integration of DAE systems with the special sparse structure
obtained with the residual approach. This algorithm has been implemented in a
Fortran solver, Modsol, which now is the heart of the Modsim system.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/7

On top of the Fortran solver is a layer of interactive Lisp routines, which are operated
by the user in the MacIntosh style. The entire system is coded in a highly modular
open fashion. This allows various interfaces with e.g. CAD programs, general
engineering data bases or other application dependent programs to be added to the
application independent core.

3.1      Component Models, Data Instances and Objects

First, let us define more precisely what is meant here by these terms. A component
model is a computer model of a physical subsystem such as a pump, a pipe, a wall, a
thermostat or even a room. A data instance is a collection of physical parameters, e.g.
the physical size, and connection references, which characterize a single component.
Several data instances may share the same component model. Together a data
instance and its component model are referred to as an object. The component model
breaks down into several parts which perform different operations on the data
instance. Each of these parts is called a method. Operations include e.g evaluation of
equation residuals and screen presentation of the data instance. In Modsim, objects
are separated into four groups depending on the way they are modelled: equation
objects, algorithmic objects, macro objects and boundary objects.

The most fundamental one, the equation object, contains a set of ordinary differential
and/or algebraic equations, modelling the behavior of e.g. a pump or a resistance. It is
simply a small differential algebraic system, where the time history of certain variables
can be calculated as soon as the remaining variables are given, as functions of time.
However, at the time of the component modelling, it is not yet clear which variables
will ultimately be given as input and which ones will be calculated as output. Only a
temporary selection, which may later on be changed, is done at this stage.

In algorithmic objects, matters are simpler; here the designation of input and output
variables can be done at the component modelling stage. The input variables are given
as input to an algorithm, which in turn calculates the output variables. Control
components such as thermostats are frequently modelled as algorithmic objects.

Macro objects do not have mathematical models of their own, they only contain
references to other underlying objects. Their sole purpose is to simplify the modelling
and the object administration. It is often convenient to operate on whole groups of
objects at once.

Boundary objects are used to provide the simulated system with time dependent input.
The details of this process is beyond the scope of this paper. Here, the main focus will
be on equation objects, since they are the most fundamental.

In Modsim, the methods of an object are separated into two groups: manipulative and
numerical. These groups together with some coordinating code for each group, form
the Lisp and the Fortran modules of the Modsim code. Manipulative methods aid the
user in the interactive work of building and editing a network of objects into a
meaningful simulation model. Most of these methods are included in the application
independent core and will be accessed automatically when a new component is
introduced. The bulk of the work involved in writing a new component model lies on



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/8

the numerical side. In the most straightforward case of setting up a simple equation
object, three Fortran procedures are required: one for calculating equation coefficients
from user specified parameters, one for the calculation of equation residuals, and one
for Jacobian evaluation. For more sophisticated equation objects requiring special
methods of integration or differentiation (in order to calculate Jacobians numerically)
additional procedures must be provided.

In the remainder of this section, the basic ideas of the Modsim system will be
presented. Initially, we will be dealing with the numerical description of equation
objects and then we move to successively higher levels of the program, finally arriving
at the user interface. At the end of each subsection there will be an example, Sample
System, which may enlighten the curious but which can be omitted on first reading.

3.2     Numerical description of the simulated system

This paper deals with the basic structure of the Modsim system. No particulars about
the underlying numerical algorithm are treated. These are included in an
accompanying paper by G. Söderlind. L.O. Eriksson and A. Bring [12]. Here, the
numerical discussion is limited to what a user must know in order to introduce a new
component model.

All the differential and algebraic equations for the continuous part of the simulated
system are solved simultaneously. All difficulties with algebraic feedback loops are
avoided this way, without artificial delays or other tricks common in many of the
programs of today.

The mathematical model of the i:th equation object is represented in the following
way:

( )E x f x ,u ,pi i i i i i� =  , (7)

where the matrix Ei may be singular, signifying the presence of algebraic equations in
the model. xi is the variable vector, which can be calculated as soon as the variable
vector ui(t) and the parameter vector pi are given. If the equation object was operated
separately, without neighboring objects, xi could be interpreted as the state of the
module and ui as the external input. Formally, the included variables in the x- and
u-vectors should be chosen so that the matrix (pencil) αEi - Ai, where Ai = ∂ fi/∂xi, is
non-singular for some α, while Bi = ∂ fi/∂ui

 
may become singular.

The full model, including all individual object models and interconnections, can be
written

Ex = f(x,u,p)

E u = E xu x

�



 , (8)

where E is a block diagonal matrix with each block Ei and the corresponding segment
of the x vector emanating from an individual object model. (8b) represents the coup-
lings between objects. Each equation in (8b) connects two variables from separate



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/9

objects together. The elements of Eu and Ex are either 1, -1 or 0. It is not necessary to
always bind u-variables with x-variables, x-x and u-u connections are also permitted,
thus allowing signal direction independent modelling. (8b) should only be regarded as
a way of computing residuals in the coupling equations. Eu and Ex may both be
singular.

3.2.1     Sample System – the equation model

Sample System is a purely academic example, built with components from the
building energy simulation field. Its sole purpose is to illustrate some of the ideas
behind Modsim.

Fig. 1. Sample System

The system consists of a pump and a pipe, transporting a heated fluid between two
subsystems in a never ending loop. Each subsystem contains a tank and a thermal
conductance, connecting the system to the outside world.

Fig. 2. A subsystem of Sample System

The conductance model is purely algebraic, with only one equation

q = kA(T1 - T2) , (9)

where q is the state variable for the conducted heat, kA is the conductivity parameter,
and T1 and T2 are the u-variables for the terminal temperatures.

The tank model is also quite simple, assuming perfect mixing of the entering fluid.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/10

mc T = q + q q

kp = w w
p f1 f2

1 2

�

�

+

+



   , (10)

where T and p are the state variables temperature and pressure. mcp and k are the
parameters thermal mass and compressibility. q, qf and w are the u-variables of the
model signifying conducted heat (from the conductance), convected heat (from the
pump (qf1) and the pipe (qf2)) and thermal mass flow (from the pump (w1) and the
pipe (w2)), respectively.

The pipe model assumes a pipe without thermal mass and with a simple friction
parameter, β, governing the flow rate through the pipe.

( )w = p p

q = wT
1 2

1

β −



 , (11)

where w and q are the state variables thermal mass flow and convected heat. p1 and p2
are the pressures at the inflow and outflow terminals, respectively, and T1 is the
temperature at the inflow terminal.

The pump model is similar, but with some additional parameters (a,b,c,d, and switch)
allowing the thermal mass flow a more complicated dependence on the pressure
difference:

( ) ( ) ( )( )w = switch a 1+ b p p c p p d p p

q = wT

2 1 2 1 2 1

1

⋅ − + − + −





2 3

(12)

The equations are described by the user in terms of two Fortran subroutines for each
model describing the Jacobians (A,B and E) and the equation residual. Routines for
the thermal conductance are provided for reference in fig. 3. These routines are called
by the solver, Modsol. The coupling matrices Eu and Ex are generated automatically by
the system as the objects are connected together graphically on the screen during the
interactive modelling process.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/11

* ROUTINES FOR THERMAL CONDUCTANCE

* JACOBIAN ROUTINE

    SUBROUTINE THERCDJ (
   & NX, NO, NP, NMP,
   & E, AB, PAR, MPAR, XU)

    INTEGER NX, NU, NP, NMP, MPAR
    REAL E, AB, PAR, XU
    DIMENSION
   & E(NX, NX),
   & AB(NX, NX+NU),
   & PAR(NP),
   & MPAR(NMP),
   & XU(NX+NU)

* PARAMETERS IN:
*  NX        NUMBER OF X-VARIABLES
*  NU        NUMBER OF U-VARIABLES
*  NP        NUMBER OF PARAMETERS
   NMP       NO. OF MODEL PARAMETERS
*  PAR(NP)       PARAMETER VALUES
*   PAR(1)        k * A
*   MPAR(NMP)     MODEL PARAMETERS
*    –
*   XU(NX+NU)     X- AND U-VARIABLES
*   XU(l)         Q
*   XU(2)         T1
*   XU(3)         T2
*   E(NX, NX)     CLEARED TO ZERO
*   AB(NX, NX+NU) CLEARED TO ZERO
*
* PARAMETERS OUT:
*  E(NX, NX)      DERIVATIVE WRT X'
*  AB(NX, NX+NU)  DERIVATIVE WRT XU

* WRITTEN BY:   A BRING 8802

* CALCULATE 'E'
*  LEAVE CLEARED FOR ALGEBRAIC EQN

* CALCULATE 'AB'
*  1 EQUATION –> 1 ROW
*  COLUMNS FOR 3 VARIABLES
    AB(1, 1) = 1.
    AB(1, 2) = –PAR (1)
    AB(1, 3) = PAR (1)

    RETURN
    END

* RESIDUAL ROUTINE

    SUBROUTINE THERCDR (
   & NX, NU, NP, NMP,
   & F, PAR, MPAR, XU)

    INTEGER NX, NU, NP, NMP, MPAR
    REAL F, PAR, XU
    DIMENSION
   & F(NX),
   & PAR(NP),
   & MPAR(NMP),
   & XU(NX+NU)

* PARAMETERS IN:
*  F(NX)      NOT CLEARED TO ZERO
*   OTHERS, SEE JACOBIAN ROUTINE
*
* PARAMETERS OUT:
*  F(NX)      VALUE OF  AB x XU

* WRITTEN BY:    A BRING 8802

* CALCULATE F

   F(1) = XU(1) –
         PAR(1) * (XU(2) – XU(3))

   RETURN
   END

Fig. 3. Jacobian and residual Fortran subroutines for the thermal conductance



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/12

3.3     Object Manipulation and Administration

In Modsim, the system matrix is not the only representation of the simulated system.
Between the matrix description and the user lies a more flexible and complete one –
the object representation.

This representation has one object for each physical component of the simulated
system. The objects are interconnected into a network of the same structure as the
physical system. It is by interacting with and changing this network of objects, that the
user manipulates the system model. The underlying matrix is never seen by the user.

The objects of the Modsim system are organized hierarchically, much like the files in
the directory system on the disk of an ordinary PC. Starting from the root macro (the
root directory), with references to underlying macros (subdirectories) and objects
(files), one can reach all available Modsim objects. But unlike PC-directories, the
macro object in Modsim does not only serve as aids for book keeping in the object
library. On the lower levels of the macro hierarchy, the macros also form meaningful
systems for simulation. Thus, we have some macros in the system which only serve as
object libraries, where the subobjects are unconnected, and others where the
subobjects also are connected into system models. The latter category are potential
system macros.

The first thing a user does, wanting to simulate or edit an existing system model, is to
move down through the macro hierarchy until the model in question is reached. At
this point he sets a flag indicating that this is the system he wants to work with.
Suppose the user wants to add an additional object to the system model. This is
always done by copying an already existing object and then subsequentially revising
the copy. All the objects under the root macro are available for copying, not just those
under the current system macro.

Every submacro under a system macro is also a potential system macro, i.e. it can be
simulated as a separate system, given the proper boundary data. This simplifies model
validation since models can be built and tested incrementally.

The Modsim object definitions are also organized in an hierarchical system,
resembling the class system of the Simula language with inheritance and class variab-
les. In this way, any code or data common to more than one component, only has to
be stored once. Furthermore, if the information is changed, it changes for every com-
ponent sharing it.

3.3.1     Sample System – the object representation

This far, we have given the impression that the macro object is the only object with
subobjects. This is however not entirely true. All the objects we have mentioned up
until now are built from smaller entities, subobjects. An equation object is, for
example, built by putting several parameter, variable, and interface objects together. If
the user elects to, two equation objects may even share the same parameter object.
This can be very practical if several nearly identical objects all need to have the same



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/13

parameter changed. Let's say we want to change the thickness of all the exterior wall
segments of a building model by editing only one position.

Parameter objects, or other objects, which are shared by more than one object are in
fact lifted to the macro above them. They become the property of the macro rather
than any particular subobject.

Fig. 4. A schematic representation of selected objects. The box-characters represent
pointers to objects. Only pointers to objects within the selection have been drawn.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/14

3.4     User Interface

The object description of the simulated system is complete. All the information is
there, organized in a suitable way for the programmers. They can alter its structure
and update it easily. Most regular users would, however, prefer the information to be
presented differently. Depending on their level of sophistication additional explanatory
pieces of information may be necessary. Some users might not need access to all
details.

These differing needs are met in Modsim by using appropriate "information filters".
We call them forms. A form is a set of instructions for presenting an object on the
screen. Certain bits of information are concealed, others are highlighted. Forms pro-
vide explanatory text and pictures, not needed by the programmers.

The form also contains methods for manipulation of the data instance. For instance,
the parameters required in the mathematical model of a component are frequently
different from those which would be found natural by an engineer for characterizing
the same component. In this case, the conversion routines, from the engineering
language to the mathematical, are associated with the form. As a general rule, the
object manipulation routines which are associated with the form are on a high level.
They in turn call the manipulation methods of the object, which perform the actual
manipulation.

The active instructions and routines of a form may change depending on the situation
and on the user's level of sophistication. E.g. an object will look different on the
screen depending on whether it is presented only for library purposes or if it is actually
a part of the simulated system. Similarly, an expert user might be allowed to perform
operations which are unavailable to the beginner. Furthermore, the form associated
with a particular object is interchangeable. It can be specially tailored to suit the needs
of a certain group of users, e.g. a language group. In this manner, Modsim takes on a
different face depending on the identity of the user.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/15

Fig. 5. The screen, the objects and the system matrix

3.4.1     User Categories

Component based simulation programs provide a lot of freedom for the user.
Freedom to create new component models and to build new systems with them as
building blocks. Along with this also comes the risk of making mistakes. Serious
errors can be caused e.g. by incompetently made component models.

For this reason it is necessary to limit the freedom of certain users. In the Modsim
program, users are separated into three different categories, with support and freedom
according to the user's level.

The component maker is responsible for the modelling of new components. He has an
understanding of the physical, mathematical and numerical aspects of modelling. He
provides the models with explanatory texts and sets the parameter and variable ranges
in which the model is valid. Programming in Lisp and in Fortran is done by the
component maker.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/16

The introduction of a new equation object involves the following steps:

1. Write three Fortran subroutines for the evaluation of Jacobians, calculation of
equation residuals, and for conversion from user to model parameters.

2. Write the Lisp object definition, i.e. assemble the right combination of variables,
parameters and interfaces.

3. Write a form for the screen presentation of the new object.

4. Write the on-line documentation for the new model, explaining its merits and
shortcomings.

The system maker builds systems out of available components. He has a physical,
engineering understanding of the simulated system but does not need a proficiency in
mathematical modelling. He operates the program primarily by pointing and choosing
in the MacIntosh style.

The following steps are involved in the making of a new system model out of available
components:

1. Make a copy of an already existing similar system (or of an empty macro) and
make it the system macro.

2. Delete and add (by copying) objects until all necessary objects are present. Move
the objects to their proper positions on the screen.

3. Connect the objects with each other and with the boundary objects.

4. Set parameters and initial values by opening the objects and typing the new data
over the old.

5. Mark the variables, that are to be logged.

6. Start the simulation. Follow the time development of certain key variables in
order to see whether the model seems correct.

7. When the simulation is terminated, inspect the time series of the logged variables
in the post processor.

If the system is to be simulated by other users with new input data some additional
steps are required:

8. Lift parameters that are to be easily available to the other users, up from the
equation object level to the macro level. Do the same with a selection of key
variables.

9. Write a form for presenting and editing the lifted parameters – an input question-
naire – with suitable instructions for the inexperienced user. If input is to be given



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/17

in terms of brand names and model numbers, write a subroutine in Lisp or
Fortran for the conversion of these into sets of physical parameters. Include the
subroutine in the form.

The black box user runs available systems with new parameters. Each of the prepared
systems and input questionnaires serves as a special purpose program, designed to
produce a specific set of results, e.g. the annual energy consumption of a house. The
input questionnaire may in this case ask for a few key parameters such as the areas of
the exterior walls and the windows, the model number of the installed heatpump, e.t.c.
These data are subsequentially converted into physical parameters and inserted into
their proper places in the system model.

One major difference between running a Modsim model and running a special purpose
program, written from scratch in e.g. Fortran, lies in the possibility of having changes
made to the model at reasonable cost. To update an already existing model will be a
quick operation for a system maker.

The distinctions between the three user roles have been exaggerated here for clarity.
In practice, the same user will interact with the system in more than one of these
ways. Switching between roles has been made easy and can be done incrementally, so
that a user can move from one level to the next as soon as the interest occurs.

3.4.2     Sample System – the user interface

The Modsim user interface will use a MacIntosh style dialogue with panels, graphical
symbols and pop-up menus. Since user interfaces look better live, this description will
be kept brief.

The system macro is presented in a window occupying most of the workstation screen
(fig. 6). An object, such as the system macro, together with its instructions for screen
presentation (its form) is here called a panel. The user can perform operations on the
system macro panel by pressing screen buttons, invoking pop-up menus or opening
submacro panels. All is done by moving the mouse around and pressing its buttons.

A screen button invokes a procedure associated with the form. (See fig. 7. for a
sample form.) Button procedures perform operations which may have consequences
outside of the current panel, e.g. "Start simulation". Panel procedures may be shared
between several panels in need of the same operation, e.g. "Close panel", or may be
private to a single panel, e.g. "Start black box simulation" for running a tailor made
questionnaire series for a specific system. The pop-up menus of the panel present a
selection of operations which can be performed on the panel itself. Examples are
"Connect interfaces", which connects objects and "Move field" which moves any of
the panel screen objects to another position.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/18

Fig. 6. A schematic representation of the Sample System panel and some subpanels.
The library panel (lower left corner) normally displays some other macro.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/19

 (:name "Sample System"
:size
(74 35)
:symbol
NIL

;;; Fields are visible panel objects.
:fields
((BUTTON :coord (1 1 17 3) :context (SYSTEM) :user (ALL) :tools NIL

:body ("Accept changes" PANEL))
 (BUTTON :coord (18 1 31 3) :context (ALL) :user (ALL) :tools NIL

:body ("Close panel" PANEL))
 (BUTTON ...

:body ("Start simulation" PANEL))
 (SUBPANEL :coord (7 5 24 17) :context (ALL) :user (ALL) :tools NIL

:body
(:closed TANK-N-COND-1
    NIL
    (SUB-CHAR-SIZE CURRENT-CHAR-SIZE CURRENT-CONTEXT)
    (SUB-CONTEXT CURRENT-CONTEXT)))

(SUBPANEL :coord (33 5 41 10) ...
:body
(:closed PUMP NIL 2 (SUB-CONTEXT CURRENT-CONTEXT)))

.

.

.
(SUBPANEL :coord (64 30 70 31) :context (SYSTEM)

:user (COMPONENT-MAKER MODEL-MAKER)
:tools NIL
:body (:open *ROOT-MACRO* NIL 1 'LIBRARY)))

;;; The tools of a form are invoked by a pop-up menu. This menu also holds
;;; additional tools which are common to all panels, e.g. "Edit field".

:tools
((:name "Connect instance"

:function-ref MS-CONNECT-INSTANCE
:context (SYSTEM)
:user (COMPONENT-MAKER MODEL-MAKER)))

;;; The list of procedures is also completed be generic ones such as "Close panel".
:procedures
((:name "Start simulation"

:function-ref MS-START-SIMULATION))
:subforms
NIL)

Fig. 7. The form associated with the Sample System macro. Left-out items are indi-
cated by three dots.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/20

4      CURRENT STATE OF THE MODSIM PROJECT

The first version of the Modsim code is yet to be completed. A great deal of
programming has already been done, but much still remains.

4.1     The Integrator

At present, the continuous integrator has been written and to some extent tested. The
implemented algorithm belongs to a class of modified backward differentiation
methods called MOLCOL methods [3]. These have, during recent years, proven to be
very effective on problems with widely differing timescales, so called stiff problems.
The MOLCOL methods include, by certain choices of parameters, the backward
differentiation methods (or Gears methods) such as the backward Euler. Other
included methods are e.g. the implicit midpoint method. If additional integration
schemes are needed for the full system, or for a single component, they can easily be
implemented within the Modsim framework.

Presently, the numerical work mainly concerns the development of program modules
for automatic calculation of initial values that satisfy the algebraic part of the DAE
system. Concurrent with this further testing of the integrator on more realistic
problems is being carried out.

The next task will be to develop additional code for handling discontinuities. Most
dynamical systems occurring in industry are automatically controlled. Controllers
introduce discontinuities. Hence, it has been considered essential that Modsim has
capabilities to model controllers along with the systems they control.

4.2     Implementation

All non-numerical routines in Modsim are coded in Common Lisp. After many years
as a rather exotic language, primarily used by a few experts, Lisp is gradually breaking
through into industry. The main reason for this is the acceptance of Common Lisp as
a de facto standard, which allows production of portable code. Unfortunately, Lisp's
reputation as an AI-language has led people to think that it is unfit for more general
applications. This, however, is incorrect. The flexible data structures of Lisp along
with several other favorable properties, make Lisp a perfect choice for many projects.

Several object packages such as Flavors or Loops have been developed as Lisp
add-ons. None of these has the necessary properties for the Modsim project. This has
forced us to develop our own package, with suitable features for the project. The
work with this object package is nearly finished and the first Modsim objects have
been created and manipulated, using the package.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/21

4.3     The User Interface

The first panels have been opened on the screen and manipulated with the mouse, but
a great deal of code still remains to be written before the user interface can be
demonstrated.

A small window system has been written, modelled after the GKS graphics standard.
This was primarily done in order to get something immediately operational. Depen-
ding on the development of window system standards, such as X-windows, the GKS
based window system may be replaced eventually.

4.4     Development Time Frame

A first version, for in-house demonstrations only, is planned for the summer of 1988.
This version will include a small component library for energy and temperature simu-
lation of buildings.

A full commercial quality system, excluding application dependent parts, will take
considerably longer to finish. A very rough estimate is between four to eight
man-years.

It is our hope, however, that industry will show enough interest in the project to allow
these man-years to be converted into considerably fewer calendar years.

5      SOME FINAL REMARKS

Many of the features discussed in this article will be included in the next generation of
simulation software. Additional features, related to artificial intelligence, have been
omitted. Questions related to these will briefly be mentioned here in order to stimulate
the further discussion.

Some people believe that simulation tools will be integrated into the CAD-systems of
the near future. In such a system, the simulation model would be formulated auto-
matically, without human interaction.

In our opinion, the totally automated systems are a long way off. The decisions that
have to be made in order to set up a reasonable simulation model, will not be made by
computers within a foreseeable future. The systems of the next generation, including
Modsim, will however feature automatic data transfer between a CAD data base and
the simulation program. Thereby, the process of entering input data will be speeded
up considerably.

Another interesting issue regards distributed system development. In the new systems,
component modelling will be done at several locations. Models will be exchanged
between different groups. This is one of the advantages with the new approach.
However, this will also, most likely, be a cause of problems. Poor models will be in
circulation, causing problems which might be difficult to detect.



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/22

One possibility is to have a central organization – preferably with a commercial
interest – which is responsible for maintenance and development of the application
independent core. Around this organization there can be several groups, commercial
or non-commercial, each maintaining application dependent component libraries and
other add-ons for a certain market segment.

Acknowledgements

The ideas presented in this paper have evolved during many fruitful discussions. The
author has merely written some of them down. The following people have, among
others, participated in these discussions: from ITM, Gustaf Söderlind, Magnus
Lindgren and Lars Eriksson and from the Division of Building Services Engineering at
the Royal Institute of Technology, Stockholm, Axel Bring, Tor-Göran Malmström,
Göran Olsson, and Engelbrekt Isfält.

References

[1] J.A. Clarke (1986): The Energy Kernel System, draft paper submitted to the
systems simulation conference, University of Liége, December 1986

[2] H. Elmqvist (1985): LICS – language for implementation of controlled systems,
Lund Institute of Technology, LUTFD2/(TFRT-3179)/1-130/1985

[3] L.O. Eriksson (1983): MOLCOL – an implementation of one-leg methods for
partitioned stiff ODE's, the Royal Institute of Technology, Stockholm,
TRITA-NA-8319

[4] E. Eitelberg (1982), Modular simulation of large stiff systems, in "Progress in
Modelling and Simulation", F. Cellier (ed.), Academic Press

[5] S.E. Mattsson (1986): On Differential/Algebraic Systems, Lund Institute of
Technology, CODEN LUTFD2/(TFRT-7327)/1-026/1986

[6] S.E. Mattsson, H. Elmqvist and D. Brück (1986): New Forms of Man-Machine
Communication, Lund Institute of Technology, CODEN
LUTFD2/(TFRT-3181)/1-025/1986

[7] P. Sahlin (1986): HEATSYS – ett program för simulering av värmesystem,
Institutionen för Mekanisk värmeteori och kylteknik, KTH

[8] E.F. Sowell, W.F. Buhl, A.E. Erdem and F.C. Winkelmann (1986): A Prototype
Object-Based System for HVAC Simulation, presented at the systems simulation
conference, University of Liége, December 1986



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/23

[9] G. Söderlind (1985): Numerical Computation and Data Communication in
Modular Simulation, ITM internal report, March 22, 1985

[10] G. Söderlind, L.O. Eriksson (1985): Modular Simulation: Theoretical Aspects
and Numerical Experiments, ITM internal report, September 16, 1985

[11] G. Söderlind, L.O. Eriksson (1986): On the Design of a Modular Simulation
System, ITM internal report, January 24, 1986

[12] G. Söderlind, L.O. Eriksson (1988): Numerical Methods for the Simulation of
Modular Dynamical Systems, to appear

[13] G. Söderlind, J. Oppelstrup (1984): The Modern Process Simulation Environ-
ment: Modelling and Numerical Methods, ITM internal report, October 19,
1984



Paper 1 , best paper award at the SIMS88 conference, VTT, Helsinki, Finland, April, 1988

1/24



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

A Neutral Format for Building Simulation Models

Per Sahlin, Research Secretary
Swedish Institute of Applied Mathematics

Box 26 300, 100 41 STOCKHOLM, SWEDEN
and

Department of Building Services Engineering
Royal Institute of Technology, SWEDEN

Edward F. Sowell, Professor
Department of Computer Science

California State University Fullerton
Fullerton, CA 926 34

and
Department of Building Services Engineering
Royal Institute of Technology, SWEDEN

2/1

ABSTRACT

Much research has been directed towards develop-
ment of software environments that allow easy con-
struction of building simulation models of widely
varying structure and purpose. For example,
TRNSYS has been in use for a number of years.
Recently, several new such environments have been
proposed. In spite of a considerable variation in
model description formats among environments, the
underlying mathematical models of physical proc-
esses are very similar. While one of the principal
aims has been to allow easy sharing of models be-
tween users of the same environment, it has not been
clear how portability was to be provided between
different environments. Another objective has been
ease of component model definition, in order to
encourage modifications and additions to model
libraries. This paper addresses both of these issues, by
proposing a neutral and natural format for component
model expression. The proposed format encourages
equation based model definition because such models
can be converted to efficient algorithmic form if
needed, whereas the converse is not always true.
Nonetheless, algorithmic component descriptions are
also supported in order to allow reuse of existing
models. Other key features of the proposed format are
typing and declaration of linkage elements between
models, which allow development of compatible
component families, and enhance model exchange
and reuse. The proposal considers underlying system
modeling issues, including hierarchical submodel
decomposition and methods for formal model expres-
sion that allow automatic translation to various simu-
lation environments. Also discussed are the software
tools needed for library maintenance and model
translation.

1. INTRODUCTION

There are currently several modular programs in use
for simulation of buildings and associated service sys-
tems, e.g TRNSYS, HVACSIM+ and NEPTUNIX.

Additionally, several new modeling environments for
the same purpose have recently been proposed, and
are in various stages of development [CLARKE 1985,
SOWELL 1986, SAHLIN 1988]. All of these alterna-
tives are similar in the sense that the mathematical
models of components and subsystems are expressed
in program modules that the user can interconnect as
needed to define the wanted system model. The
usefulness of any such environment depends on the
availability of a library of predefined models for
components in the intended application area, and on
the existence of a simple mechanism for implement-
ing new models when needed.

One might expect that component models could be
interchanged among environments because, at a given
level of idealization, the mathematical models of the
physical processes are virtually the same. Unfortu-
nately, this is not necessarily the case because each
environment employs its own semantics and syntax
for model expression and interconnection. Without
some form of standardization of component model
definitions the desired portability will be provided, at
most, within modeling environments, but not between
them.

This paper suggests a possible starting point for such
a standard, namely a Neutral Model Format (NMF).
The format is "neutral" in the sense that models are
expressed in a general manner, rather than in the
format of any existing or planned environment. The
standardized definition encompasses only the essen-
tial information needed to express a model unambi-
guously. This information is formalized in order to
allow automatic translation to the format of a par-
ticular simulation environment. The format is
"natural," meaning that the definition employs terms
and constructs as close as possible to the experience
and training of scientists and modelers.

The focus, in this initial work, is on models with a
basically continuous behavior. This includes building
envelope as well as HVAC system models. Excluded
are components such as thermostats with a dead band



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/2

(hysteresis) and micro processor based controllers,
which are better described in discrete time. Further-
more, the emphasis is on the machine readable
mathematical description of the models. Systematic
model documentation has been treated elsewhere
[CLARKE 1984, DUBOIS 1988].

The discussion that follows begins with an overview
of structured modeling principles that motivate the
NMF. Many of these are inspired by the work of
[ELMQVIST 1986] and [MATTSSON 1988]. This is
followed by a description of the format, supported by
small examples.

2. MODEL STRUCTURING PRINCIPLES

The NMF is based on a few principles that ensure
generality:

1. Continuous models are expressed in terms of
equations.

2. Variables and interconnections are typed.

3. Large models must allow hierarchical decompo-
sition.

4. Validation is integrated into the modeling pro-
cess.

The principles are briefly described and defended
below.

2.1 Equation Modeling

The internal behavior of a continuous component of
the NMF is described by a differential-algebraic
system of equations which for the general case can be
written

f(x, �x , p) = 0 ,

where f is a vector function of the variable vector x,
its time derivative �x , and a parameter vector p. In all

cases of interest here, this system of equations will be
underdetermined; some of the x's will have to be
given as functions of time.

Let us, for the sake of the discussion, separate be-
tween the equation model of a component and a
problem for the same component, where the problem
is the underdetermined equation model together with
a selection of given variables. For example the equa-
tion model of a thermal resistance may be written

0 = q - UA(t1 - t2),

where q is the heat flow through the resistance and t1
and t2 are the terminal temperatures. Now, for this
simple one-equation model three different problems,
i.e. combinations of given and calculated variables
may be posed:

1. t1 and t2 given and q calculated
2. t1 and q given and t2 calculated
3. t2 and q given and t1 calculated

All three problems are well posed. In the fol-
lowing, well posed will be used in the sense:
able to produce a locally unique non-trivial so-
lution. For more complex models only some se-
lections of given variables will yield well posed
problems.

Each component model in most current simulation
environments, e.g. TRNSYS and HVACSIM+, is
described as an equation model along with a single
input-output selection (a problem in our sense). The
component modeler makes this selection when the
model type routine is written.

The pre-selection of given variables leads in some
cases to limitations in the actual use of the models.
Frequently a system modeler, using available types,
would like to connect the inputs of one component
with the inputs of another and similarly for the out-
puts. This, of course, is impossible and one of the
component models has to be rewritten, with a differ-
ent input-output selection. The system modeler is
forced to become a component modeler and write,
debug and compile Fortran code.

These difficulties are overcome in some of the more
recently proposed environments (e.g. SPANK and
Ida, formerly MODSIM [SAHLIN 1988]) by leaving
the input-output designation to the environment. This
will substantially increase the versatility of each com-
ponent model.

The automatic input-output designation in more
recent environments is done by keeping equation
models separate from input-output selections until the
components are actually connected together. This
separation is only possible if equations are declared
separately, the way they are in the NMF.

Since some environments can do without explicitly
stated input-output designations in their component
model format, one could argue that this information
is redundant in the NMF, which should be free of
environment specific non-essential information.
There are however several reasons for including one
possible input-output designation (one problem) for
each NMF component model. Firstly, if this informa-
tion was to be left out, automatic translation would be



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/3

impossible for input-output oriented environments.
Secondly, a viable input-output set is a part of the
required validation procedure. That is, a component
modeler has to demonstrate at least one well posed
problem for a model.

2.2 Component Interconnection

Having focused briefly on the internal behavior of
component models we turn to the interconnection
mechanism between them. Little attention has been
devoted to this topic in many of the past discussions
on the development of common component libraries,
although model reuse and exchange have been the
primary motivations. However, one should be aware
that sets of components developed by various groups
will remain to be incompatible, even when stored in a
common library, unless a structured way of construc-
ting inter-component links is imposed. Otherwise, the
sockets and the prongs simply will not fit together.

The development of a set of component models for a
simulation task involves numerous decisions, some of
which are crucial and others which are less funda-
mental in nature. Unfortunately, all of these deci-
sions, not just the crucial ones, will later on influence
the compatibility with other models. It is our aim here
to provide a component format which encourages
compatible choices among the trivial decisions with-
out imposing any restrictions on the fundamental
ones.

One of the initial crucial decisions to be made is the
choice of a set of variables that will represent the
behavior of the simulated system to an appropriate
degree of accuracy. For example, in a simple HVAC
circuit without cooling it might be sufficient to choose
dry air mass flow rate and air enthalpy as the main
variables carrying information between individual
components. We are referring here to the set of vari-
ables involved in the interaction between compo-
nents; additional variables may be used internally.
Once this choice of interaction variables has been
done, a compatible family of components can be
developed. For the HVAC circuit this might involve
e.g. a collector, a distributor, a heating coil and a
simple zone model as shown in Figure 1.

Collector

    min1 0 = -mout + min1 + min2   mout

    hin1 0 = -houtmout + hin1min1 + hin2min2  hout

    min2  hin2

Distributor

  mout1   h

    min   mout2

0 = -min + mout1 + mout2

    h   h

Heating Coil

    m m
0 = -hout + hin + qsource/m

    hin hout

Zone

       m   hin

h = hin + qair/m

cpair temp = h

m = func(temp)

       m   h

Figure 1.

The zone model has a control function, func,
built in which determines the supply air flow
rate as a function of zone temperature.

The choice of interaction variables is affected by the
component model complexity. For example – if we
wish to consider now moist air problems – a cooling
coil model should include the effect of condensation,
and thus some measure of air humidity must be inclu-
ded in the air characterization. If the cooling coil is to
be used in conjunction with the previous models, the
list of interaction variables to be carried around the
circuit must be expanded. The principle here is that
the component in need of the most information de-
termines the interaction set of variables. Components
with smaller needs will ignore unnecessary circuit
variables.

Now, let us look at some of the trivial decisions for
our sample case. Although the simulation in principle
can be carried out using vastly different sets of units
in each component, compatibility is enhanced if
common units are used. This is an area where en-
couragement, via access to existing models, and mild
punishment, via compulsion to write additional
declarations, are likely to stimulate uniformity. For
the sample HVAC circuit, a similar argument can be



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/4

made concerning the choice between temperature and
enthalpy as an interaction variable.

A mechanism for increased compatibility in this sense
is variable typing. All variable types to be used in
component models are declared globally in the NMF.
A modeler who is about to introduce a new model in
the library will use already declared types whenever
possible.

The next step is to declare the groups of variable
types that characterize compatible families. Such a
group is called a link type in the NMF. Mass flow rate
and enthalpy together and in this order is an example
of such a type. Examples of the typing syntax are
located in the beginning of section 3.

The link concept also allows an environment user to
connect submodels at the interface level rather than
variable by variable. This means, for example, that a
fan outlet is connected with a cooling coil inlet as far
as the user is concerned; in the background however
several variables may be involved in the connection.
Most current simulation environments, e.g. TRNSYS
or HVACSIM+, operate on the variable level, so the
link concept would in this respect simply be ignored
for these. The more important library structuring
effect of link typing is still retained.

In link supporting environments link types can be
used to check whether a user is making meaningful
connections. There are cases, however, when a
strictly imposed typing concept is too restrictive.
Controllers, for example, should be allowed to inter-
face with various types of links. This is dealt with in
the NMF by providing a generic link type which can
contain any number of any type of variables. An
environment can then check the individual variables
in the connecting links for matching types rather than
the links themselves. A generic variable type is also
provided in order to allow for suppressed type check-
ing on the variable level as well. [MATTSSON 1988]
discusses ways of constructing more elaborate type
checking in a modeling environment.

2.3 Hierarchical Decomposition

Another fundamental concept for structured modeling
is hierarchical submodel decomposition, i.e. one sub-
model within another in multiple levels. A composite
building model could then, for example, be composed
of several submodels, each one representing a floor. A
floor is in turn built up of several zone models, which
are built from wall models, and so on. One major
advantage of this method is that it enables incre-
mental modeling and validation. A modeler can make
sure that e.g. a wall model behaves properly before it
is used as part of a zone model, which then is simi-

larly validated and so on, incrementally approaching
the building level. Another advantage is that good
graphical interfaces can be constructed for a corre-
sponding hierarchical presentation of a model, where
a user first gets an overall view of the system and
then can zoom down for successively increased levels
of detail.

Although most component models in the NMF will be
used as part of composite or macro models on the
environment level, the formatting of composite mod-
els themselves, i.e. interconnection templates, is not
encompassed by the present proposal. There are seve-
ral reasons for this, including the observation that
small models are inherently more readily reused. At
the same time we recognize that the process of com-
ponent model development, within the NMF, could
benefit from hierarchical decomposition, so eventual
extension to this capability is an open issue.

2.4 Model Validation

Component model validation – in the sense of making
sure that a model to some degree of accuracy repro-
duces the behavior of the actual physical device – can
of course only be done if one has access to the device
itself. There is no way to stop someone from using a
library component in a non-intended way. The best
thing one can do is to require extensive textual docu-
mentation to be provided along with the library entry,
including the background of the underlying mathe-
matical model. The documentation aspect of library
building is beyond the scope of this paper.

The ambition of the NMF is to make sure that the
entered models make sense from a mathematical
perspective. Unfortunately, even this is quite a task.
Existence of solutions to nonlinear equations is a very
difficult subject and no general and practical theory
exists. A model may work well over a particular
parameter and variable range and be ill posed over
another. In the end, we are left with the component
modeler's ability to write robust models and to docu-
ment them properly, including their ranges of valid-
ity.

What the NMF asks of a modeler is that a single
problem – one input-output designation along with an
equation model – is provided, and that its range of
well posedness is specified. The well posedness range
is specified in two different ways: firstly, in terms of
explicit limits on the involved parameters and variab-
les and, secondly, in terms of accompanying docu-
mentation. Responsibility for the existence of solu-
tions for other possible input-output designations
must be left to the targeted environments.

A number of methods of varying degrees of reliability



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/5

are available to the component modeler in order to
make sure that the single problem is well posed.
These methods can be applied separately or jointly.
Eventually, there may be software tools to assist in
this process. The methods include:

1. Functional Linear Independence. This means
that no model equation can be formed by a lin-
ear combination of the others.

2. Matching. There must exist a one to one mat-
ching between equations and variables in the
designated output set.

3. Regular matrix pencil. For a general component
model (from section 2.1) call the vector of the
designated input set u and the corresponding
output vector x yielding f(x, �x , u, p), where

dim(f) = dim(x). Then the matrix (pencil):

λ ∂
∂

∂
∂

f

x

f

x�

−  ,

where λ is some scalar, must be non-singular for
all but a finite number of λ's and this must, of
course, be true for the entire parameter and vari-
able working range of the component
[SÖDERLIND 1988].

4. Numerical Testing. This is the most reliable test
and also one of the more practical. The idea is
that the modeler finds some algorithm for solv-
ing the designated problem, e.g. a direct itera-
tive scheme or a general purpose differen-
tial-algebraic integrator such as DASSL
[PETZOLD 1982] or even a simulation envi-
ronment, and then, by numerical experimenta-
tion, finds the range of well posedness in pa-
rameter and variable space. As a minimum, it
must be shown that a solution exists in the in-
tended operational regime.

Some solvers take advantage of information about
"undesirable inverses" of individual equations. The
basic idea here is that a scalar equation, for example
h(x,y) = 0, may be readily inverted to yield x = g1(y)
where g1 is a well behaved function, but the inverse
y = g2(x) may be problematical. One possible prob-
lem is that the function g2 may not be well behaved
numerically. For example, dg2/dx may become in-
finite in the range of interest, or for environments
that develop the inverses symbolically, g2 may not be
obtainable as a closed form expression, or even if
obtainable it may have poor numerical properties or
be unwieldy. The list of undesirable inverses is op-
tional in the format and can be left out for the con-
venience of local modeling in environments that do

not use this information.

3. THE FORMAT

In this section the basic elements of continuous NMF
models are explained and exemplified. Some more
advanced features have been omitted due to space
limitations. A formal syntax description has been
formulated but is not included in this paper.

3.1 Global declarations

As previously motivated variable types and groups of
such types, link types, are declared globally. The
global declarations are then referenced from each
component model declaration. Parameter types and
constants are also declared globally within a library of
component models.

Some examples of global declarations are

VARIABLE_TYPES

/* name unit kind*/

temp "Deg-C" CROSS
heatflux "kW" THRU
massflow "kg/h" THRU
enthalpy "kWh/kg" CROSS

LINK_TYPES

/* name variable types ... */

heat_flow (temp, heatflux)
heat_source (heatflux)
mass_enthalpy (massflow, enthalpy)

PARAMETER_TYPES

/* name unit */

heatflow "kW"
heat_capacity "kWh/(kg Deg-C)"
massflow "kg/h"
temp "Deg-C"

CONSTANTS

/* name value unit  */
stef_bolz 5.77E-11 "kW/(m2 K)"

The first two fields of a variable type declaration need
no explanation, but "kind" may not be familiar. All
variables can be categorized as being of either direc-
tion dependent flow-type (e.g. mass flow, heat flow,
electrical current, torque and force) or direction
independent potential type (e.g. temperature, pres-
sure, enthalpy, voltage and position). The physics of



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/6

flow-type variables says that they should sum to zero
when two such variables are connected together. They
are traditionally called through variables and will be
called so here as well. Potential-type variables are on
the other hand set equal to each other when con-
nected. They are called cross variables.

A link type declaration is a named list of a set of
variable types.

3.2 Continuous Model Elements

The elements of continuous models will be introduced
incrementally, starting with the collector model of the
sample HVAC circuit. All examples of this paper are
designed primarily to illustrate the NMF. Most of
them have not been tested in practical simulation.

CONTINUOUS_MODEL mh_collector

ABSTRACT "A thermal tee-piece model for bringing to-
gether two separate streams of fluid"

EQUATIONS

/* mass balance */
0 = -m_out + m_in1 + m_in2   BAD_INVERSES () ;

/* energy balance */
0 = -h_out*m_out + m_in1*h_in1 + m_in2*h_in2
BAD_INVERSES (h_out, h_in1, h_in2)

LINKS

/* type name variables .... */
mass_enthalpy outlet POS_OUT m_out, h_out ;
mass_enthalpy inlet1 POS_IN m_in1, h_in1 ;
mass_enthalpy inlet2 POS_IN m_in2, h_in2

VARIABLES

/*type name role def min max descr.*/

massflow m_out OUT  0.  0. BIG "outlet massflow"
massflow m_in1 IN  0.  0. BIG "inlet 1 massflow"
massflow m_in2 IN  0.  0. BIG "inlet 2 massflow"
enthalpy h_out OUT  0. -BIG BIG "outlet enthalpy"
enthalpy h_in1 IN  0. -BIG BIG "inlet 1 enthalpy"
enthalpy h_in2 IN  0. -BIG BIG "inlet 2 enthalpy"

END_MODEL

3.2.1 Equations

As previously motivated, the internal behavior of
continuous components is described by a system of
scalar equations, each of which is written

<expression> = <expression>,

where an expression may be a single variable, a first

order time derivative, a parameter, a number, or some
mathematical combination of the above. The aim is to
keep the syntax as "natural" as possible. Expressions
may also include references to separately defined
functions written in a regular programming language.
The order of the equations is completely arbitrary; the
solution procedure is beyond the scope of the compo-
nent model.

The optional list of bad inverses is associated with
each equation.

Variables may be arrays, and vector operations can be
defined through external subroutine calls. The syntac-
tical details of such operations have been omitted
here.



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/7

3.2.2 Links

All variables that connect the model with neighboring
models must appear in a link declaration. The link
type must be either globally declared or GENERIC.
Each THRU variable in the link is specified in terms
of its direction of definition.

3.2.3 Variables

Each continuous model variable is declared in seven
aspects:

1. Type. Each type that is referred to must be
either globally declared or of the GENERIC
kind.

2. Identifier. For array-type variables, index
ranges are given.

3. Role. As mentioned earlier, one feasible prob-
lem is specified for each model. Variables are
cast to play a certain role in this problem as
either given (IN) or as calculated (OUT).

4. Default value. Most environments will provide
defaults for initial values (of state variables)
and of initial value guesses (for algebraic vari-
ables).

5.& 6. Minimum and maximum limit of the allowed
range.
Each variable is given a range, within which
the model is valid.

7. Explanatory text string.

Variables that only appear in the links (interfaces) of
a model – i.e. which do not appear in any of the equa-
tions – are declared in the same way. Role is irrele-
vant for these variables, but is conventionally set to be
IN.

The mh_zone model involves some additional comp-
lexity:

CONTINUOUS_MODEL mh_simple_zone

ABSTRACT "A zone model with built in control of supply
air flow rate as an external function of zone temperature"

EQUATIONS

/* zone energy balance */
h = h_in + q_air/m       BAD_INVERSES () ;

/* temperature-enthalpy conversion */
cp_air*temp = h       BAD_INVERSES () ;

/* required supply air mass flow */

m = func (temp, m_max, m_min, t_max, t_min)
BAD_INVERSES (temp)

LINKS

/*  type name variables .... */

mass_enthalpy air_inlet POS_IN m, h_in;
mass_enthalpy air_outlet POS_OUT m, h;
heat_flow zone_air temp, POS_IN q_air;

VARIABLES

/*type name role def  min max descr.*/

enthalpy h_in IN  0. -BIG BIG "entering air"
enthalpy h OUT  0. -BIG BIG "zone air"
massflow m OUT .01 SMALL BIG "supply air"
heatflux q_air IN  0. -BIG BIG "air heat source"
temp temp OUT  0. -BIG BIG "air temperature"

PARAMETERS

/* type name def min max descr*/

heat_capacity cp_air 28E-5 0. BIG "air heat capacity"
massflow m_max 50. SMALL BIG "maximum

  ventilation rate"
massflow m_min .01 SMALL BIG "minimum

  ventilation rate"
temp t_max 25. 0. BIG "temperature at

  which supply air
is set to minimum"

temp t_min 18. 0. BIG "temperature at
  which supply air
is set to maximum"

FUNCTION

FLOAT   func (temp, mmax, mmin, tmax, tmin)

LANGUAGE   F77

INPUT
FLOAT temp, mmax, mmin, tmax, tmin;

CODE

REAL FUNCTION FUNC(TEMP, MMAX, MMIN,
TMAX, TMIN)

REAL TEMP, MMAX, MMIN, TMAX, TMIN

IF (TEMP.GE.TMAX) THEN
FUNC = MMIN

ELSEIF (TEMP.LE.TMIN)
FUNC = MMAX

ELSE
FUNC = (MMIN - MMAX)*TEMP/(TMAX - TMIN)

ENDIF

RETURN
END

END_CODE
END_MODEL



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/8

3.2.4 Parameters and Model Parameters

Parameters are used to adapt a generally formulated
equation model to the behavior of an actual device.
They are declared under two separate headings:
Model Parameters and Parameters. The former allow
a user to adapt a model structurally, to provide inter-
nal flexibility in numbers. Their purpose and use are
further explained in section 3.2.6. The latter class of
parameters are the more straightforward, they specify
behavioral properties such as size, heat capacity,
thermal conductivity etc.

3.2.5 Functions

Separate functions or subroutines are used either in
the equation model or for parameter processing,
which is explained below. They may be written in
various well known programming languages, thus
making it possible to reuse already existing code
within the format context.

3.2.6 Flexible Model Descriptions

The main objective of simulation environments,
rather than simulation programs, is to provide in-
creased modeling flexibility. This flexibility can be
separated in structural and behavioral flexibility. The
division between the two is somewhat diffuse; struc-
tural flexibility means that mathematical models of
structurally differing physical systems may be built,
and behavioral implies that a structurally fixed model
may be adapted to simulate quantitatively different
systems of the same basic structure.

The possibility to interconnect component models in
various configurations provide structural flexibility in
simulation environments, while in the more tradi-
tional programs the emphasis clearly is on behavioral
flexibility.

Flexibility in numbers. It is convenient to provide
some degree of structural flexibility within a primitive
component model. For example, a wall model can in
principle be constructed by connecting a number of
separate instances of thermal resistance and mass mo-
dels in series. The potential accuracy of the model is
then determined by the number of layers (masses).
However, this approach is cumbersome in several
ways. The addition of a layer in order to alter the
accuracy is a modeling operation to be carried out in
several steps, e.g. instantiate a model, set its para-
meters and connect it. It would be much easier if this
flexibility in numbers could be contained within a
single wall model. The NMF has a construct for flexi-
bility in numbers, the FOR statement. It is illustrated
by a finite difference model of a wall.



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/9

CONTINUOUS_MODEL   thermal_wall

ABSTRACT "A 1D finite difference wall model"

EQUATIONS

/* space discretized heat equation */
FOR i = 2, n_layers -1

c*t'[i] = t[i - 1] - 2.*t[i] + t[i + 1] ;

c*t'[1] = taa - 2.*t[1] + t_[2] ;
c*t'[n_layers] = t[n_layers - 1] - 2.*t[n_layers] + tbb ;

/* boundary conditions */
0 = -ta + .5*(taa + t[1]) ;
0 = -tb + .5*(t[n_layers] + tbb) ;
0 = -qa + d*(taa - t[1]) ;
0 = -qb + d*(tbb - t[n_layers])

LINKS

/*  type name variables .... */

heat_flow a_side ta, POS_IN qa;
heat_flow b_side tb, POS_IN qb;

VARIABLES

/*type name role def   min max description*/

temp t[1..n_layers] OUT  0. -BIG BIG "temperature
  profile"

temp ta OUT  0. -BIG BIG "a-side surface
  temp"

temp tb OUT  0. -BIG BIG "b-side surface
  temp"

temp taa OUT  0. -BIG BIG "a-side virtual
  temp"

temp tbb OUT  0. -BIG BIG "b-side virtual
  temp"

heatflux qa IN 0. -BIG BIG "a-side
  entering heat"

heatflux qb IN 0. -BIG BIG "b-side
  entering heat"

MODEL_PARAMETERS

/*type name min max decription */

INT n_layers 3 BIGINT "number of layers"

PARAMETERS

/*type name def min max description */

c-type c 10. SMALL BIG "rho*cp*dx*dx/
  (lambda*3600.)"

d-type d 1. SMALL BIG "lambda*a/dx"

/* easy access parameters */

area a 5. SMALL BIG "wall area"
length thick .25 SMALL BIG "wall total

  thickness"
heat_trans lambda .83 SMALL BIG "heat transfer

  coeff"
density rho 2050. SMALL BIG "wall density"
heat_capacity cp 1.2 SMALL BIG "wall heat

  capacity"

PARAMETER_PROCESSING

wall_par( n_layers, c, d, a, thick, lambda, rho, cp)

FUNCTION

VOID wall_par (n, ccoeff, dkoeff, area, thick, lambda, rho, cp)

LANGUAGE F77

INPUT
INT n;
FLOAT area, thick, lambda, rho, cp;

OUTPUT
FLOAT ccoeff, dcoeff;

CODE
/* The Fortran code is omitted*/
END_CODE
END_MODEL

A further example of the FOR statement comes from
the mh_zone model. The version we have discussed
so far has a single qT-link enabling it to be connected
to one external component like a wall or a thermal re-
sistance. It would be better to have a parameter within
the model, a model parameter, which determines the
number of available qT-links. Then a suitable number
can be selected during system modeling and the zone
core can be connected to an arbitrary number of
walls.

Before we go into the feature provided for run time
behavioral flexibility, the parameter processing
header of the wall model deserves to be mentioned.

3.2.7 Parameter Processing

All the various named coefficients of the equation
model are declared as parameters, but in addition to
this, extra parameters may be declared in a model.
Frequently, the mathematical characterization of a
model, i.e. the parameters that appear in the equation
model are quite different from those that an engineer
spontaneously would choose to specify the correspon-
ding physical device. For example, a zone model,
which accounts for long wave radiation between
surfaces, would have view factors (in some form)
appearing in the equation model. However, a user of
such a model would normally not prefer to specify
these directly but rather the sizes, orientation, and
reflectance of the surfaces themselves.

The mapping of user given parameters or, more
informally, easy access parameters onto equation
model parameters is done by one or more subroutines.
The reference to these routines is declared under the
heading Parameter Processing.



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/10

3.2.6 Flexible Model Descriptions – revisited

Behavioral Flexibility. Increased behavioral flexibil-
ity is provided in the new environments by the possi-
bility of locally replacing component or subsystem
models without disturbing the model as a whole. This
feature is most frequently used to experimentally find
an appropriate level of approximation for a particular
submodel. Behavioral flexibility is often needed at
run time as well. The internal description of a model
may need to change significantly as certain conditions
are fulfilled. A typical example is when a component
goes into a saturated state, e.g., when a heating coil
or a fan has reached its capacity limit, or when a
model has a singularity, which can be circumvented
by a local re-description.

Changes like these can of course be hidden in exter-
nal functions, like we did with the ventilation air
demand equation of the mh_zone model. It would
however make the model more legible if they were
declared explicitly. The construct provided for this in
the NMF is the conditional expression with a struc-
ture familiar to every programmer, for example:

/* required supply air mass flow rate in the mh_simp-
le_zone */

m = IF temp >= tmax THEN
mmin

ELSE IF temp <= tmin THEN
mmax

ELSE  (mmin - mmax)*temp/(tmax - tmin)
END IF

3.3 Algorithmic Models

Although continuous elements form the bulk of a
building simulation model, algorithmic models opera-
ting in discrete time are more suitable for certain
components. Sampling, micro processor based con-
trollers are obvious physical examples of such com-
ponents. A further activity in a simulation that lends
itself to algorithmic description is boundary data
processing. To calculate, for example, the amount of
solar radiation that falls on a certain surface at a
particular time of day is more straightforward in
algorithmic form. The inherent input-output orienta-
tion of an algorithmic description is in these cases
only a minor restriction, since one rarely is interested
in the reverse question: What input gives rise to this
output?

For these reasons, algorithmic components are next
on the list of items to be formatted or standardized.
Due to space constraints we omit any further discus-
sion about this here.

4. SUPPORTING SOFTWARE

Part of the NMF concept is also a set of supporting
software tools. Among these are translation tools for
conversion of the models from the standard format to
that of particular modeling environments. Also
needed are tools for the creation and maintenance of
component models, and those for the creation and
maintenance of libraries of such models. It is envi-
sioned that some organization will host a "base"
library. This base library and the software tools can
be ported to any modeling environment. It is antici-
pated that once ported, the base library will be aug-
mented as required by the needs of the user.

The library itself contains models in the standard
format. The translation software should be partitioned
into the portion that will be the same regardless of the
target environment, called the interpreter, and a por-
tion that generates the models in the format of a
particular environment, called the generator. The
interpreter knows the standard syntax and library
format, while the generator knows the syntax and
format of the target environment. Obviously, the
interpreter can be delivered with the library, while the
generator will have to be customized for each envi-
ronment. This is not unlike the task of porting sys-
tems software to different hardware environments. It
can be made relatively straightforward by providing
implementers with example generators for
well-known environments, and certain software tools
that are commonly needed.

5. CONCLUSIONS AND DISCUSSION

The NMF has been proposed as an alternative to
crafting component models for each of the existing
and evolving simulation environments. The NMF has
the following precepts: (1) Essential information
about the component models is formalized in order to
allow automatic translation; (2) Continuous models
are equation based; (3) The concept of typed links
encourages libraries of plug-compatible component
models; (4) Mathematical validation is required for
each model. We have shown some of the details of the
NMF specification in a few examples. However, it
must be understood that as further component models
are developed in the format, changes and additions of
this preliminary proposal may be required.

A key part of the concept is automatic translation.
Feasibility of translation to a specific environment
has been demonstrated for SPANK using
MACSYMA [BUHL 1989]. Furthermore, generation
of Ida models is straightforward, since they are also
equation based. Type routines for TRNSYS and
HVACSIM+ involve an additional difficulty because



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/11

algebraic equations are solved locally within each
subroutine. A general purpose non-linear algebraic
equation solver will have to be part of the generators
for these environments. There are however several
robust solvers readily available in e.g. the SLATEC
library.

Given a good generator, the format should provide a
TRNSYS component modeler with a time effective
alternative to direct Fortran programming.

Perhaps the most significant potential outcome of the
NMF would be the inception and growth of a signifi-
cant public domain library of building component
models. For this to occur, six events are required:

1. The acceptance of a standard format, perhaps
based on the one outlined herein.

2. The development of the software that interprets
the standard format.

3. The development of a model generator for each of
several widely used environments, e.g., TRNSYS,
and HVACSIM+.

4. The development of software tools for the creation
and maintenance of a library.

5. The creation and validation of an initial base
library containing frequently used component mo-
dels, such as those used for energy analysis. The
TRNSYS library could be a starting point.

6. Establishment of a mechanism for acceptance of
new models for the base library, as well as forma-
tion of new specialized libraries.

Once these events have taken place, there should be
be a strong incentive to use and extend the library,
both because of the economy relative to independent
library development by the user communities of each
environment, and because of the desire of users to
employ accepted component models. Once the library
comes into wide use, forces will develop to extend it
into new areas, such as control simulation.

ACKNOWLEDGEMENTS

The basic ideas behind the NMF came forth during a
series of discussions at the Swedish Institute of Ap-
plied Mathematics. The authors have merely put it all
on paper. Magnus Lindgren, Axel Bring, Lars
Eriksson and Gustaf Söderlind have been participat-
ing in these discussions in addition to the authors.

REFERENCES

BUHL 1989   W.F. Buhl, E.F. Sowell, J.M. Nataf
"Object Oriented Programming, Equation Based
Submodels, and System Reduction in SPANK,"
Building Simulation '89 Conference, Vancouver

CLARKE 1984   J.A. Clarke, L. Laret "Explanation
of the Data Processor Proforma," ABACUS, Strath-
clyde, and Laboratoire de Physique du Batiment,
Liege, working document, Dec., 1984

CLARKE 1985   J.A. Clarke, J.J. Hirsch, W.F. Buhl,
A.E.Erdem, F.C.Winkelmann, E.F.Sowell, A. Lahel-
lec, N. Huang, J. Sornay, L. Laret "A Proposal to
Develop a Kernel System for the Next Generation of
Building Energy Simulation Software." Lawrence
Berkeley Laboratory, Nov. 1985

CLARKE 1986   J.A. Clarke "The Energy Kernel
System: A Technical Overview," Proceedings of the
Second International Conference on System Simu-
lation in Buildings. Liege, Dec., 1986

DUBOIS 1988   A.M. Dubois "MODEL-BASED
COMPUTER AIDED MODELLING: the new per-
spectives for building energy simulation," communi-
cation from CSTB, B.P. 21, 06561 VALBONNE
Cedex, France

ELMQVIST 1986   H. Elmqvist "LICS: Language
for Implementation of Control Systems," Dept. of
Automatic Control, Lund Institute of technology, Box
118, 221 00 Lund, Sweden

MATTSSON 1988   S.E. Mattsson "On Model
Structuring Concepts," Presented at 4th IFAC Sym-
posium on Computer Aided Design in Control Sys-
tems (CADCS), Beijing, China

PETZOLD 1982   L.R. Petzold "A Description of
DASSL: A Differential/Algebraic System Solver,"
Proceedings of IMACS World Congress, Montreal,
Canada, 1982

SAHLIN 1988   P. Sahlin. "MODSIM: A Program
for Dynamical Modelling and Simulation of Conti-
nuous Systems." Proceedings of the 30th annual
meeting of the Scandinavian Simulation Society,
ISSN 0357-9387

SOWELL 1986   E.F. Sowell, W.F.Buhl, A. E.
Erdem, and F.C. Winkelmann. "A Prototype Ob-
ject-based System for HVAC Simulation." Proceed-
ings of the Second International Conference on Sys-
tem Simulation in Buildings. Liege, Dec., 1986

SÖDERLIND 1988   G. Söderlind, L.O. Eriksson, A.



Paper 2 , presented at the IBPSA Building Simulation ‘89 conference, Vancouver, Canada, June, 1989

2/12

Bring "Numerical Methods for the Simulation of
Modular Dynamical Systems," Report from the
Swedish Institute of Applied Mathematics



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

IDA SOLVER

A Tool For Building and Energy Systems Simulation

Per Sahlin Axel Bring
Swedish Institute of Applied Mathematics Building Engineering Services

Chalmers Teknikpark Royal Institute of Technology
412 88  Gothenburg 100 44  Stockholm

Sweden Sweden

3/1

ABSTRACT

General continuous simulation of today is a handi-
craft mastered by a small group of experts. Systematic
modelling techniques and supporting tools are begin-
ning to emerge, promising access to advanced simu-
lation also for less experienced users. Several ambi-
tious projects around the world are at different stages
of completion (e.g. EKS, SPANK, CLIM2000, SEE,
MS1). These projects approach the task from widely
different angles and the final products, once avail-
able, will offer a rich menu of alternatives. To a
certain extent the duplication of effort is desirable,
since the state of the art is still in its early stages and
several different paths of development deserve to be
explored.

However, there are some minimum requirements
that a truly effective simulation environment must
fulfill. As of today, shortcomings in existing solvers
still force most users down to the smallest of detail
and many of the advantages with high level model-
ling are thereby lost.

In this paper some of these shortcomings and their
remedies are discussed, leading to a list of corner
stones for a simulation environment solver specifica-
tion.

– Modelling is input/output free, i.e. variables have
no irrevocable roles as given or calculated. In-
put/output free modelling leads to models descri-
bed by equations rather than the traditional cal-
culation procedures, thus getting closer to the
physical relationships known to the modeller.

– The system can handle algebraic as well as differ-
ential equations, including algebraic loops.

– The integration uses variable timestep in order to
supply consistent, easy to use, accuracy control.

– Sparseness in the system of equations is utilized
effectively.

– Models can be precompiled and used as ready
building blocks, as in TRNSYS or HVACSIM+.

– Discontinuities in driving functions and in model
equations can be handled properly.

– Extensions to the basic equation modelling allow
handling of discrete system states, as required by
e.g. hysteresis.

These requirements are analyzed and IDA Solver
is presented.

IDA Solver is the nucleus of IDA, an environment
for interactive graphical modelling and simulation,
which is under development at the Swedish Institute
of Applied Mathematics in cooperation with the
Department of Building Engineering Services, KTH,
Stockholm.

1.  INTRODUCTION

Powerful inexpensive desktop computers in combina-
tion with new graphical and object oriented software
techniques have brought salient possibilities to the
field of continuous simulation. In response, several
promising development projects have been started.
Some of these, e.g. SEE (Mattson 1989) and MS1
(Lorenz 1990, personal communication), are applica-
tion independent, while others are to some degree
committed to a certain application. In the field of
building and energy simulation some of the more well
known projects are SPANK (Buhl, Sowell, and Nataf
1989), EKS (Clarke et al 1989), CLIM 2000
(Bonneau et al 1989), and IDA (Bring 1990). The
common goal is to create simulation environments,
i.e. sets of software tools which make it possible to
build simulation models for virtually any aspect of a
physical system. The result of these efforts will be a
broadening of the traditional boundaries of building
simulation. Focus will no longer always be on the
envelope, but it will be where it needs to be, envelope,
systems, plant, fire, etc.

With the exception of SPANK and IDA, the
projects have exclusively been addressing modelling
aspects, i.e. the tools for the interactive process of



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/2

constructing a simulation model. This is a previously
neglected issue of great importance. However, new
modelling capabilities will also put new requirements
on the solvers of tomorrow. Modelling papers some-
times create the impression that the question of actu-
ally solving arbitrary models already has been dealt
with to a sufficient degree. This is, as will soon be-
come apparent, far from the truth.

The IDA simulation environment is, since four
years, under development at the Swedish Institute of
Applied Mathematics in cooperation with the depart-
ment of Building Services Engineering at the Royal
Institute of Technology, Stockholm. The work is pur-
sued along three paths:

1. A solver for large scale differential-algebraic sys-
tems of equations has been developed. It has been
tested internally for about two years and is now
available for external testing.

2. A component model format, Neutral Model For-
mat (NMF), has been developed in cooperation
with the SPANK team at Lawrence Berkeley Lab
(Sahlin and Sowell 1989). NMF allows compo-
nent models to be described in equation form in a
program neutral way, thus enabling the same
model to be used in several environments. The
format is available for use and automatic transla-
tors are under development for SPANK and IDA.
A paper with some examples of NMF models is
presented at this conference by Kjell Kolsaker of
NTH, Norway (Kolsaker 1991).

3. An interactive graphical modelling tool, IDA
Modeller, has been implemented and is currently
tested internally as a front end for the solver.
Some features are:

– hierarchical (nested) models in multiple levels,

– link level connections with compatibility
checks, i.e. variables are not connected indivi-
dually,

– model presentations can be customized to a
high degree,

– vector valued variables, parameters and links.

The overall ambition with the IDA project is to
provide an integrated environment which makes
simulation accessible to engineers with limited mod-
elling experience. This makes it necessary to lift the
level of abstraction up from the equation (or state-
ment) level to the component level. A user should be
able to view, give parameters to and connect a com-
ponent model instance much in the same way the

physical device is treated during design. This not only
puts strict requirements on the user friendliness and
flexibility of the modelling software, but perhaps even
more so on the solver, which must be extremely
robust without significant efficiency sacrifices. In this
paper we will concentrate on the solver related issues.
Aspects on modelling will be treated separately.

The text is organized in three parts. The main,
first part is a point by point discussion of solver
design. The choices made in IDA are mentioned but
not dwelled upon. Most of the issues are worthy of a
separate paper, and some of a book, so the account
will be far from exhaustive. It should be viewed more
as our version of a checklist for someone in search of
a good solver. The second part provides a brief over-
view of IDA in general and the solver in particular.
Finally, we will go into some detail on a much ne-
glected solver issue of significant practical impor-
tance: the treatment of discontinuities and discrete
system states.

2.  CONTINUOUS SIMULATION SOLVERS

2.1  Equation Modelling

There are several ways of formally representing a
simulation model, e.g. bond graphs, block diagrams
with Laplace transfer functions, or block diagrams
with mathematical equations. The relative merits of
each method in terms of generality, sub model reus-
ability, availability of analysis tools, and user present-
ability is an interesting and important topic – in
particular for the field of building simulation, where
the lack of formal coherence of modelling methods
seriously hampers development. We have done some
work relating to this (Sahlin 1988, Sahlin 1989) and
Elmquist and Mattsson have made outstanding con-
tributions by, among other things, bringing forward
equation based model structuring principles and
corresponding software (Elmquist 1986, Mattson
1988). Lorenz has done interesting work on bond
graphs and multi representation modelling software
(Lorenz 1989). A thorough review of this work is
beyond the scope of this paper and, in terms of mo-
delling we will limit our discussion to a few key
questions related to solvers.

The model representation methods mentioned
above can to a sufficient extent be translated into each
other and the fact that we in this paper and in IDA
use equations does not affect generality. There is
however another class of frequently used representa-
tion methods that yields models that are of a different
nature and not lend themselves to cross translation
without resort to artificial (or even real!) intelligence.
Building simulation style transfer functions in dis-



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/3

crete time is one example of such a model type.
Subroutine packaged calculation sequences is another
frequently used component model form, which in our
opinion has serious shortcomings as a primary model
representation. These methods mix the modelling and
simulation activities and are therefore unsuitable as a
base for large scale model libraries. The main reason
for this is that they are limited to input/output model-
ling.

2.2  Input/Output Modelling

Several authors have stressed the limitations of mod-
els with fixed information flow. All modelling papers
cited here point this out. Lorenz, for example, has
even written a separate "Memorandum to Stop Confu-
sion Over Subroutines and Submodels" (Lorenz 1990,
personal communication). We will restrict ourselves
here to briefly pointing out the problem and some of
its background.

Given a mathematical model of a physical device,
some of the variables can be calculated (as many as
there are equations) as soon as the remaining vari-
ables in the model are given, sometimes as functions
of time. For most models this selection of given and
calculated variables can be done in more than one
way. The calculation procedure is different depending
on the variable selection. The problem is that, if the
calculation procedure in itself is used to document the
model, only one of all the possible variable selections
can be used and there is no automatic way to change
this selection. Consequently, a calculation procedure
must be given for each of the interesting selections
and it is obviously undesirable to have multiple repre-
sentations of the same model in a library. That much
about the problem. We think that most people recog-
nize the disadvantage and the question is why most
programs in fact use input/output modelling.
TRNSYS and HVACSIM+ are only a couple in a
multitude of examples.

One reason is certainly ease of implementation.
The thought of packaging a model in a ready-to-use
subroutine, which can be treated as a black box by a
user, is certainly appealing and it works fine – as long
as we want exactly the information the subroutine is
supplying. The problem is that when the writer's
opinion of what is interesting differs from the user's,
one is forced into the reverse engineering problem of
trying to extract an equation model from a calculation
procedure. The alternative is to treat the equation mo-
del itself, or an equivalent representation, as a source
and each time a calculation is needed generate the
procedure automatically from the source combined
with the user specified input/output selection. This is
obviously more complicated from a programming
point of view but the difficulties are well within reach

of today's methods.

It should be pointed out that while input/output
modelling is an obvious handicap for some applica-
tions it is less cumbersome for others. Some purely
man-made physical systems are in themselves input/-
output oriented, i.e. each component is designed to
only influence downstream and not affect upstream
components in any significant manner. Electronic
units are, for example, often designed in this way.

For other applications it is possible to invent rules
and conventions for how a user can connect models
together in order to circumvent the input/output
limitation effectively. Input/output thinking is rooted
into our engineering and programming souls to such
a degree that these connection restrictions sometimes
are not even consciously noticed.

However, for most applications things become
simpler when the input/output restrictions are lifted
and a user is allowed to focus on real problems. Any
potential driven flow system will illustrate this. An
input/output model of a simple (electrical, thermal or
fluid flow) resistance model must come in two ver-
sions. One which calculates the flow, given terminal
potentials and another which calculates a potential
given the flow and the remaining potential. For
multiport components the number of needed model
versions increases rapidly with the number of ports.

Input/output modelling is one of the factors that
complicate simulation work by forcing users to deal
with unnecessary and unstimulating detail. There
seems to be little reason to accept it in a good simu-
lation environment.

2.3  Differential-Algebraic Equation Models

The CSSL language standard of 1967 has heavily
influenced, and in later years limited, the field of
continuous simulation. CSSL-based solvers are still in
majority. In 1967 digital solvers for stiff systems of
ordinary differential equations (ODE's) were at the
forefront of technology and algorithms that could
solve implicit sets of algebraic equations (AE's)
simultaneously were not generally available, which
they are today. Consequently, CSSL-solvers still have
weak capabilities for algebraic equations and we have
a situation similar to that of input/output modelling,
i.e. user communities that have learned to live within
the limitations of a dated technology.

It has been claimed that engineers naturally use
both differential and algebraic equations (DAE's) for
modelling if not restricted by, e.g., a particular solver.
This should certainly be true for the field of building
and energy simulation, where the slow but influential



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/4

dynamics of weather and building envelope make
differential equations indispensable. Implicit alge-
braic equations to be solved simultaneously usually
come from pipe networks which distribute air and
water throughout the building. These networks in-
volve a set of nodes with different pressures and
connections with nonlinear flow-pressure character-
istics, due to turbulence or nonlinear fan or pump
curves. If the network is closed, the model will con-
tain algebraic loops. The resulting set of nonlinear
algebraic equations can be quite difficult to solve,
especially if the coefficients of the flow-pressure
relations differ by several orders of magnitude. This is
the case for air distribution models of buildings where
nodes may be in contact via anything from a crack to
an open doorway.

In traditional building simulation the numerical
problem of algebraic loops is usually handled by avoi-
ding it. The user is required to prescribe all flow rates
in the system. This may be acceptable in many cases
since design flow rates are supposed to be constant in
time, but other times the focus of interest is on the
unpredicted or undesirable deviations from the design
flow rates. In conclusion, for a general simulation
environment we think the ambition must definitely be
set higher, since both building and system are to be
simulated together with true coupling and without
need for special tricks on the user's part.

Another common way to get around the problem
of algebraic loops is to introduce auxiliary dynamics
in the system and thereby effectively create a system
of ODE's. The approach can sometimes be justified
on physical grounds but it is hardly acceptable as a
general solution to the problem.

For a true DAE solver the problem of detecting
and "fixing" algebraic loops does not exist. The solver
is designed to automatically solve a fully implicit set
of DAE's. A general DAE solver, like IDA, accepts
problems of the form

0 = F(x', x, u, p, t) , (1)

where x is a set of variables to be solved for, u is an
external input vector and p is a set of parameters.
Note that the time- derivatives are allowed to appear
implicitly in the equations.

An interesting observation is that several authors
from different application backgrounds have come to
the same conclusion regarding this general model
formulation, e.g. (Mattson 1986). In chemical process
engineering the starting point was in completely
algebraic models and the need to study dynamics has
emerged over time, while in other fields the develop-
ment has gone from ODE to DAE.

The numerically most difficult part of solving a
set of DAE's is to start things up and find the first
solution which satisfies the algebraic part of the
system, given only a very rough initial guess supplied
by the user. The phase of finding this starting point is
referred to as the initial value calculation and we will
return to it later.

Another important, still unsolved, problem with
DAE solvers comes from systems of equations with so
called high index of nilpotency. Since this is not a
real separator between different solvers (no entirely
satisfactory solver exists), we will not go into it in any
depth. High index systems can, unfortunately, appear
from seemingly innocent physical problems, like
trying to calculate what the forces are acting on a
particle travelling about on a given curve in space.
An interesting discussion about similar problems and
DAE's in general can be found in (Mattson 1986).

2.4  Algebraic Solution Techniques

For most systems of algebraic equations, the only
reasonably safe and efficient way of solving the
system is to use a, sometimes damped, Newton-type
technique, where the system Jacobian (the matrix of
the derivative of every equation with respect to every
variable) is calculated and factorized. This is an
undisputed fact among numerical analysts. In spite of
this, several well known simulation tools use simpler
fixed point iteration techniques. The main reason for
this is most likely, again, ease of implementation. The
result is often poor and unreliable convergence prop-
erties at the expense of the users and, as a secondary
effect, badwill for simulation in general.

Algebraic equations are solved both during the
initial value calculation, and during normal
timesteps. In IDA the solution methods for these two
cases are separated since the quality of initial guesses
are vastly different.

At a regular timestep a prediction from the previ-
ous timesteps provides a high quality guess and an
undamped Newton step will give optimal con-
vergence. The difficulty lies in the choice of method
for calculating the Jacobian matrix. This is a costly
operation and a new Jacobian is in most solvers only
calculated and factorized when the convergence slows
down. Straightforward numerical Jacobian calcula-
tion involves in the worst case n+1 evaluations of all
equations in the system, where n is the Jacobian
dimension. Several more or less sophisticated tech-
niques are used by different solvers for Jacobian
approximation. Due to space constraints we will have
to leave the issue with this observation. In IDA ana-
lytical equation derivatives are given by the user



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/5

whenever possible. They are cheap and have optimal
quality. For component models where analytical
Jacobians are impossible, or during component model
development, numerical Jacobians are calculated. For
linear component models Jacobians are calculated
only once during a simulation.

Robustness of solution methods for initial value
calculation is an issue of crucial importance, since
this is by far the most common point of breakdown
for simulations. Initial values are not only calculated
initially but also at each jump discontinuity. Since
nonlinear systems of equations can have multiple
solutions, it can never be guaranteed that an algo-
rithm will find the right one. This is a case where we
never will be able to provide completely satisfactory
tools. Two things can be done, however. First, alter-
native solution algorithms which converge slower
(close to the solution) but safer can be used. IDA
presently uses a Newton homotopy method, embed-
ding the algebraic equations into a sequence of prob-
lems with a continuously changing solution. Other
methods are planned to complement this approach.
Secondly, one can violate the golden guideline never
to mix model with solution procedure. A linearized
version of difficult nonlinear models can be provided.
These models would be used at the first iteration of an
initial value calculation to set the solution off in the
right direction. In addition to this, some particularly
error prone equation formulations can be avoided in
components.

2.5  Integration Methods

Variations in integration methods mainly affect the
efficiency of the solver. However, the performance
differences may be dramatic. The crucial divider runs
between implicit and explicit integration schemes.
Explicit schemes can outperform implicit ones by
very large factors, hundreds or more, on problems
with no algebraic equation and similar timescales
throughout the system (non-stiff problems). On the
other hand, implicit schemes may easily win by
similar factors on stiff problems. If the problem is
formulated as in eqn. (1), explicit methods are ruled
out, since derivatives appear implicitly and advantage
of explicitness is thereby lost. Consequently, IDA
uses only implicit methods. However, most DAE
problem can also be formulated with some loss of
generality,

0 = g(x, z, u, p, t)
(2)

x' = f(x, z, u, p, t)

where x is the vector of dynamic states, z holds the
algebraic variables, and u and p are inputs and para-
meters. For this formulation explicit methods may be

used for the dynamic part of the problem. The loss of
generality should for practical purposes not be too
serious, since derivatives only rarely appear implicitly
in equation models. The gains of being able to use an
explicit method can, on the other hand, not be expec-
ted to be overwhelming, since the algebraic set of
equations still must be solved implicitly at each
(short) timestep.

In conclusion, IDA's commitment to the general
formulation of the problem and to implicit methods
might in some contexts be a shortcoming. Non-stiff
problems with few algebraic equations are on the
other hand extremely rare in building and energy
systems.

2.6  Variable Timesteps and Error Estimation

With implicit integration methods each timestep is
expensive, but in return one can take long steps when
there is little activity in the simulated system since
only accuracy and not stability influences the allow-
able step length. To take advantage of this, modern
solvers have step length control algorithms that moni-
tor the activity of the solution and keep the step
length optimal with respect to the desired accuracy.
Step length control algorithms are usually quite crude
and some interesting work is presently done to im-
prove this by applying traditional PI-control methods
(Lundh, Gustafsson, and Söderlind 1988). IDA cur-
rently uses traditional step length control but the new
methods will be implemented when available.

With long timesteps comes also the risk of grossly
overshooting important events in the solution such as
a sudden fan start up. This necessitates a special sys-
tem for signaling such incidents to the timestep
control algorithm so that a step can be taken to a
point just before the discontinuity, which is then
passed with special care. IDA's methods to overcome
discontinuities are presented in section 4.

For fixed timestep solvers the error fluctuates in
an uncontrolled fashion with the activity of the solu-
tion. The simulationist must then in order to get some
control over the error repeat runs with systematically
smaller steps until subjectively "equal" results are
obtained. Unfortunately, few people seem to have the
patience to do this. The widespread any-solu-
tion-is-a-good-solution attitude is another factor
which undermines confidence in simulation methods
in general.

Good control over numerical errors is in our
opinion absolutely crucial to serious simulation, since
one must be able to separate numerical and modelling
errors. The only practical way to understand model-
ling errors is to make repeated experiments with



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/6

different (sub) models. If another set of experiments
must be carried out for each tested model in order to
estimate numerical errors, the full procedure is likely
to bore even the most determined user into sloppiness.

A solver should have as few error control para-
meters as possible, preferably only one. IDA today
works with one error tolerance for integration error
and an additional parameter for event localization
accuracy, but the latter will most likely be eliminated
in future versions. Integration error is measured
relative for large quantities and absolute for small,
with automatic shifts between the two. The compro-
mise between user friendliness and good error control
is difficult and alterations of the present method will
probably be tried.

2.7  Utilizing Sparseness

The heavy part of the work in each timestep in an
implicit algorithm is the Jacobian factorization. For a
typical simulation problem the number of non-zero
elements of the Jacobian is proportional to the num-
ber of problem variables, while the total number of
elements, of course, is n2. Thus, an algorithm's ability
to utilize this sparseness is crucial. A thorough ex-
amination of all the different ways of doing this
would fill several books and many such books exist
(e.g. Duff, Erisman, and Reid 1986). Here, we will be
content with a sketchy discussion of the various
approaches pertinent to simulation and their relative
merits with respect to a future "typical" large building
simulation problem.

Integration algorithms for simulation can be
classified as being either equation based or modular.
Equation based algorithms operate on individual
equations, while in a modular system, like TRNSYS,
HVACSIM+ or IDA, the group of equations compri-
sing a component model plays a similar role.

2.7.1  Equation Based Algorithms

Equation based algorithms, such as SPANK (Buhl,
Sowell, and Nataf 1986) or NEPTUNIX (Nakhle
1986) analyze the system graph, or equivalently the
incidence matrix, and based on this information equa-
tions are sorted, in order to reduce as much as possi-
ble the work of factoring the Jacobian. The most basic
methods reorder equations in order to minimize the
bandwidth of the Jacobian. This can be done with a
number of standard methods, e.g. the reverse
Cuthill-McKee algorithm. Then a factorization algo-
rithm is applied which only operates on elements
within a certain distance from the diagonal. For a
sequential system where all the models come in a row
one after the other this method is very effective,
while, if there is feedback in the system, the band

width grows large.

A more sophisticated class of equation based
methods, e.g. SPANK, reduce the size of the Jacobian
by automatically ordering equations in chains which
may be evaluated in sequence leaving only so called
cut sets or tear variables in the Jacobian (Kron 1963).
This method can for many problems reduce the size
of the Jacobian drastically.

This approach is carried one step further in so
called symbolic reduction methods where symbolic
algebra is used to actually eliminate unnecessary and
uninteresting variables and equations. This can result
in a very small and dense Jacobian, but sometimes
unfortunately also in extremely long and complex
expressions in each equation.

Some important common characteristics of equa-
tion based systems are:

– Input/output free modelling is comparatively easy
to achieve.

– The same reduction principle is applied to the
entire set of equations, i.e. the possibility to treat
individual subgroups of equations with a different
method is usually lost.

– A compiler must usually be invoked in the model-
ling-simulation cycle, since the entire set of equa-
tions is frequently evaluated with one single sub-
routine call. This is not the case with SPANK
where each inverse of each different equation is
compiled into a separate C-function. This way,
only new component models involve compilation,
while different configurations of the same compo-
nents may be simulated without compilation.

– Minor structural model alterations between simu-
lations, e.g. changing one component model for
another, lead to a complete re-reduction, and fre-
quently compilation, of the full set of equations.
This will slow down the modelling-simulation cy-
cle considerably.

2.7.2  Modular Algorithms

In modular systems the set of equations for each
physical component is treated as a group. The same
sorting strategies as for equation based systems are
used, but on the module rather than on the equation
level, thus resulting in blocked matrix structures. A
module may contain internal structure which is
invisible to the global solution algorithm. Frequently,
only a minority of a component's variables are con-
nected externally.



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/7

The degree of component individuality varies
between different solvers and algorithm modes. At
one extreme, module routines merely supply the
global integrator with Jacobian elements. IDA has an
option for this approach rendering maximum robust-
ness. At the opposite end of the spectrum, compo-
nents have their own integrators which proceed with
a local timestep according to the local solution activ-
ity. The coupling between modules is maintained at a
'global timestep'. This class of methods is called
multirate and it is available in e.g. HVACSIM+,
where groups of modules which are loosely coupled,
so called superblocks, proceed at different timesteps.
IDA also has a multirate option, where each individ-
ual component is integrated with a separate timestep
but, so far, with a common integrator. However, the
knowledge about error estimation for multirate inte-
gration is still very incomplete and therefore we do
not recommend the method for serious simulation.

Some principal common characteristics of modu-
lar systems are:

– Most modular environments are strictly input/-
output oriented due to component models imple-
mented as calculation procedures. Furthermore,
for many systems the module procedure code is
the only formal model description. IDA is, to our
knowledge, the only modular environment which
is input/output free. Component models for IDA
are described and documented in the Neutral
Model Format, NMF (Sahlin and Sowell 1989).

– Special structure within component models, or
other properties such as linearity, can be utilized
for individual models. For large local finite diffe-
rence models this is indispensable, since they may
contain a substantial number of internal states and
have a very specific structure.

– Component models are compiled separately and
general system modelling with library components
does not involve compilation. This makes it pos-
sible to ship systems with fixed component li-
braries for a certain application without need for
an integrated compiler.

– Changing the set of equations for an individual
component is done locally within the module. The
equation shift can be done either manually be-
tween simulations or automatically during simu-
lation.

2.7.3  Trends for the Future

Simulation models of today tend to become as large
as available computer processing capacity allows.
This makes efficiency the principal solver property.

However, as number crunching power rapidly be-
comes cheaper and more accessible, man time spent
on modelling can be expected to play an increasing
role as a limiting factor. This will make solver ro-
bustness more important than ever, since this is the
critical solver property in the modelling phase. The
ideal is to have access to a range of solution strategies
within the same environment, where different com-
promises between robustness and efficiency have been
made.

Automatic modelling tools will make it possible to
keep track of very large models. Some people also
envision automatic model generation from
CAD-representations of buildings. The battle of
efficiency (with no consideration of other properties)
between equation based and modular methods will
depend on the amount of internal structure of tomor-
row's component models. Equation based methods are
likely to have the advantage if there will be a lot of
rather simple individual models. For modular meth-
ods there is always a certain overhead for each mod-
ule and a component model needs at least a few
internal states to make up for this overhead.

We think that engineers will use growing com-
puter power mainly to develop more realistic compo-
nent models. Examples could be models where things
like air or water stratification are modelled with finite
differences (or elements) in two or even three dimen-
sions. Large FD models of pipes, heat exchangers,
and coils are even closer at hand. The present separa-
tion, between field programs – like PHOENICS,
FIDAP, and NASTRAN – and the network oriented
programs under discussion here, is likely to become
more diffuse. It will be the latter class of programs
which adopts properties of the first, rather than the
other way around. In this engineering oriented sce-
nario the total number of components of a typical
system will not exceed what a human mind can
fathom with the aid of model presentation tools.

In the alternative, artificial intelligence scenario
huge system models are generated more or less auto-
matically from the CAD-representation (product mo-
del) of a building. It can be safely assumed that the
number of automatically produced submodels indeed
will be large, since the engineering judgment required
to make wise model reductions is far beyond AI
methods of today. Thermal room models can be redu-
ced in size already by identification of central modes
(Cools, Gicquel, and Neirac 1988), but climatization
and control systems are, and will continue to be, far
more difficult to deal with. The large number of
submodels puts limits on the complexity of each one
and, therefore, we have a case for equation based
methods.



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/8

The art of simulation environment design is still in its
early stages and it is, at this point, important that
several projects are allowed to coexist. This will
provide a rich material for future evaluation and
standardization, and hopefully, the fittest (and not the
richest or loudest) will survive.

3.  AN OVERVIEW OF IDA SOLVER

In the remainder of the paper we will concentrate
more specifically on IDA. Space will unfortunately
not allow anything but a very brief account of every-
thing except discontinuities which will be discussed
in some detail. The IDA User's Guide (Bring 90) will
complete the picture for those who would like to try
the program. The numerical methods are more care-
fully presented in (Söderlind, Eriksson, and Bring
1988).

3.1  Overall System Structure

The IDA simulation environment is organized as two
major parts:

– A modelling tool for interactive handling of
system descriptions. A graphical user interface
lets the user compose and manipulate component
based systems, where components are represented
by icons in a Macintosh style. The system repre-
sentation is fully object oriented and hierarchical.
Windowing technique allows access to the details
of the component descriptions, including parame-
ter values, model equations, etc. The modeller is
implemented in Lisp on Apollo workstations.

– A Fortran solver for integration of systems of
differential-algebraic equations. This part can be
activated from the modeller to integrate systems
created there, but it can also be run as a
stand-alone program, taking input from a data
file. The data file can be produced by the modeller
or created and maintained by an editor. The for-
mat is key word oriented and uses names for all
entities, thus giving good legibility. The Fortran
system is easily portable and can be run on PCs.

3.2  Neutral Model Format

The models are formulated in NMF. Some additions
have been made to the original format specification.
These extensions will be touched upon below. An
updated description of the NMF is being prepared.

Model descriptions in the NMF format can be
automatically checked and translated to the internal

representation required by the modeller. Preparation
of screen representation of models is not automated.

3.3  Component Representation in the Solver

In the solver each component model is represented by
a group of Fortran subroutines. A translator from
NMF is planned and partly implemented, but cur-
rently the routines are coded separately. This manual
task is made simpler and safer by a set of naming and
implementation rules, but debugging of component
routines is still a necessary part of model develop-
ment.

The Fortran routines deal with the following four
tasks:

– Evaluate the model, i.e. calculate residuals in the
equations.

– Calculate the Jacobians for the model equation
system. Three matrices are delivered – derivatives
with respect to the x', x, and u vectors.

– Describe the component type, i.e. specify number
of equations, variables, and parameters, plus
names of all entities including module type.

– Process parameters when relevant. The NMF for-
mat contains an option for parameter processing
via a routine written in some regular program-
ming language. The set of parameters that are best
suited for a mathematical model description are
often others than a user would naturally select.
The parameter processing takes care of the trans-
formation from the user's 'easy access parameters'
to those finally used in the evaluation routines.

The Fortran routines are precompiled and organi-
zed in component libraries, which are maintained by
some special support utilities.

3.4  Differential-Algebraic Equation Modelling

The basic modelling technique used in IDA is equa-
tion based. A general formulation of the equations for
a module is a system

0 = F(x', x, u, p, t) (3)

The system is fully implicit and in general differ-
ential-algebraic, i.e. ∂F/∂x' may be singular. The
declarative equation modelling is complemented by
limited assignment modelling in order to cater for
handling of hysteresis and discontinuities. This exten-
sion is discussed in detail in section 4.

3.5  Input/Output Free Modelling



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/9

In the NMF models, the x variables are specified as
OUT-variables and the u variables as IN-variables.
This should not be taken as a permanent interpreta-
tion, but rather as one possible interpretation. Among
the possible designations of variables as x or u, the
one chosen in the model description should have the
property that the x-variables could normally be cal-
culated from the u-variables. For some component
models, e.g. thermostats and other control compo-
nents, only one designation is possible, but in general
there is an arbitrary choice between equivalent alter-
natives. In this case, the roles as IN- or
OUT-variables could only be finally assigned in
relation to a specific simulation problem, when all
connections in a simulated system have been com-
pletely specified. This is done automatically in IDA.

3.6  Interconnection of Modules

In the NMF format, the models have interfaces orga-
nized as links, where each link has a specified type. A
link type comprises a specific set of variables of given
types and in a prescribed order. This link concept
allows simple and efficient interconnection of compo-
nents while supporting compatibility checks on con-
nections. Both links and variables can be given ge-
neric types to cater for cases where type checking is
not desired.

The link concept and the type checking as descri-
bed above are handled by the modeller. When the
solver is run as a stand-alone system, connections are
specified at the variable level without type checking.

3.7  Integration Techniques

The integration algorithm chosen for IDA belongs to
a class of backward differentiation methods called
Modified One-Leg Collocation methods (MOLCOL)
(Eriksson 1983). These have proven to be very ef-
fective on stiff problems. They include, by choice of
parameters, the implicit midpoint method and Gears
methods, such as the backward Euler. The implemen-
tation use automatic adjustment of timestep and
integration order.

The Jacobian matrices needed are generated at the
module level, either by a component subroutine calcu-
lating derivatives analytically, or by numeric differen-
tiation.

3.8  Modular Algorithms, Utilizing Sparseness

The basic calculation of residuals and Jacobians is
always done at the module level. Several different
algorithms are available for the solution of the global
system.

One of the methods eliminates all coupling equa-
tions, identifying connected variables with each other,
and generates a global system matrix from the com-
ponent matrices. Currently, no sparseness technique
is applied on the resulting global system.

The other methods retain the modular structure.
In each Newton iteration the modular systems are
first solved locally, then the residuals in the coupling
equations are eliminated, causing updates of the local
solutions. In this process the coupling equations are
treated differently in the different methods, but one
common feature is the generation of a Schur comple-
ment from the global system. One alternative treats
the full Schur matrix, others presort the modules to
make the Schur matrix block band diagonal or the
full system bordered block upper triangular. The
latter approach is similar to the one used in SPANK,
except that it operates on the module rather than the
equation level.



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/10

4.  DISCONTINUITY HANDLING

4.1  Discrete System States and Hysteresis

So far we have been discussing simultaneous differen-
tial-algebraic equations as a means to describe the
internal behavior of a continuous component model.
Declarative modelling with DAE's is suitable for a
very large group of models and an efficient solver
explicitly restricted to such systems is a valuable tool
per se. However, some frequently needed components
do not lend themselves to strict equation modelling so
the repertoire has to be extended.

The most obvious example of such a component is
probably a simple thermostat with a dead band. In the
sequel, we will make heavy use of that example to
illustrate important aspects of the related problems
and their solutions.

The figure below illustrates the fundamental func-
tional relation describing the behavior of a thermostat
closing on low temperature.

The control signal is a function of the tempera-
ture, but it is not unique in the dead band between
Tmin and Tmax. To select the proper solution in that
area, we must know the current state of the thermo-
stat. That system state can not be handled as a normal
continuous variable. We need some new mechanism
to take care of discrete system states and hysteresis
phenomena in general.

4.2  Assigned States

A new kind of variable, an ASSIGNED STATE, is
introduced for this purpose. A_S-variables are up-
dated by explicit assignments rather than by equation
solving. The values are remembered between succes-
sive evaluations of the equation model. The A_Ss are
similar to SAVED local variables in HVACSIM+.

It should be emphasized that the strong case for
equation modelling presented above is still valid. For
the great majority of continuous models straight equa-
tion modelling is still sufficient. A_S-variables will
be used only when there is a genuine need for them.

Let's now formulate the central section of a ther-

mostat model, using an assigned state:

EQUATIONS
0  =  – out_signal +  IF T > Tmax THEN 0.

ELSE IF T < Tmin THEN 1.
ELSE old_signal ;

ASSIGNMENTS
old_signal :=  out_signal ;

'out_signal' is a normal continuous variable, sol-
ved from an equation, while 'old_signal' is an A_S
updated by assignment.

4.3  Updating assigned states

In each iteration of each tentative timestep, the A_Ss
are updated as directed in the model descriptions. A
solver must however also maintain a second copy of
all A_Ss, a copy which is updated only at the end of
an accepted timestep. Prior to each iteration, every
A_S is given the value of its copy, i.e. the value it had
after the last accepted timestep. An example might
clarify this; let's consider a model with one single
A_S, updated by the assignment:

i := i + 1 ;

At the end of a simulation, 'i' would hold the total
number of timesteps, not the total number of itera-
tions.

4.4  Order between equations and assignments

Equations in a wholly continuous model do not have
to be written in any particular order, the system is
solved simultaneously. The situation changes, howe-
ver, when assignments are included in the model.
Assignment statements are ordered sequentially with
respect to each other and the order is normally quite
essential for the total effect. When equations are
mixed with assignments it must be clear at what stage
of the assignment process that the equations apply.
Mixing of equations and assignments can create
ambiguities and make solutions undefined. To create
clarity, it is reasonable to impose the following rule:

– Assigned states, which are used to carry informa-
tion from one timestep to the next, are assigned
after the equation solving in each timestep. The
assignments are also written after the equations in
the model description.

4.5  Discontinuities in equations

The extended modelling repertoire presented above
has been used to good effect to cater for hysteresis.
This has been achieved by allowing system states to



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/11

be remembered between timesteps and by supplying
mechanisms for their change. However, shifts in sys-
tem states will quite often be accompanied by discon-
tinuous changes in equation variables and in global
functions appearing in equations. These changes will
require more attention than they have got so far; in
fact the model presented above is flawed in a quite
serious manner!

Let's put the thermostat model to use in a simple
system. A thermal mass is connected by a linear con-
ductance to a constant ambient temperature and
heated by a constant heat source controlled by a
thermostat. If the power is sufficient, the heating will
be on intermittently and the temperature of the mass
will vary like this:

Look at the situation when the rising temperature
T approaches Tmax. Any timestep long enough to let
T reach the limit will leave T undefined: If we try
with T > Tmax the heating will be off and T will not
reach Tmax; if we try with T < Tmax the heating will
be on and T should exceed Tmax, etc. A slight change
in the thermostat model will solve the problem:

EQUATIONS

0 = out_signal – old_signal ;

ASSIGNMENTS
IF T > Tmax THEN old_signal := 0.
ELSE IF T < Tmin THEN old_signal := 1.
ELSE ;

4.6  Control of timestep at discontinuities

The latest version of the thermostat model finds a
solution to the sample problem. It lets the temperature
reach the limits, the thermostat state will change
between timesteps, and the next step will set off in the
new direction.

In fact, the temperature will not only reach the
limits but exceed them; the calculated solution will
look like this:

The deviation from the desired solution affects the
accuracy in an uncontrolled manner depending on the
time step. Improved control of the accuracy requires
proper choice of timesteps.

Choosing a suitable step for a solver with fixed
timestep is mostly done by guesswork since a proper
control can only be achieved by varying the step
systematically until a picture emerges of how accu-
racy depends on timestep.

Using variable timestep, the step is typically cont-
rolled by estimates of local error, a procedure which
normally gives good control of accuracy. However,
the discontinuities currently discussed introduce new
features, not handled properly by the normal error
estimates. The sometimes very long steps taken by
variable timestep solvers could introduce large errors
if timestep is not controlled at discontinuities.

Before we look at means to handle this problem,
we should make an inventory of the different types of
discontinuities we have to cope with and the types of
problems they are likely to create.

4.7  Events

Any discontinuous change in a variable or in its
derivative will be called an event. Causes of events
can be external, i.e. localized in driving functions, or
internal, appearing in component model equations or
in global functions used in the equations. Our ther-
mostat is an example of a component model where
events are generated visibly in the model. As an
example of a global function generating events, we
might consider convective heat transfer at wall sur-
faces showing a relation like this:



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/12

This film coefficient would normally be calcu-
lated, not explicitly in a model, but by a call of a
global
function.

Independent of event source, the primary effect of
a discontinuity on the regular variables can appear,
either in a variable value or in its derivative. Let's call
the first case a 'jump' event and the second a 'knee'
event.

If convective heat transfer is calculated by the
above function, the passage through zero of any
corresponding temperature difference Tair–Twall

should be regarded as a knee event. Other examples
of events are e.g. – starting of a fan (jump),
P-regulator reaching limit (knee), shift from turbulent
to laminar regime (jump or knee depending on mod-
elling).

The computational implications of an event for
the solver will depend on event type and possibly on
the modelling context of the event.

A knee event will leave all variables continuous
and should be possible to negotiate by careful hand-
ling of timesteps.

The effect of a jump event will depend on what
equations it disturbs. If it only appears in differential
equations, the change can be 'absorbed' by the deriva-
tives of the dynamic variables and the overall effect
on the system will be of the knee type. If it affects any
algebraic equation, however, the jump discontinuity
will show up in other variable values as well, and an
initial value calculation is required before continuous
integration can resume. In our sample system, a jump
change in the control signal from the thermostat will
only cause a knee type effect for the system.

4.8  Event Handling

The crude way to handle events in a variable timestep
solver is to let the events 'surprise' the solution algo-
rithm. A long step across a discontinuity will mostly
fail to converge or give unacceptable local errors, but
it can also happen that the event passes undetected
without any reliable control of accuracy. If the event
is detected by its ill effects, the algorithm will repeat-
edly shorten the step until convergence hopefully
occurs. This approach obviously leaves much to be
desired.

What is needed is a means to safely detect when
an event occurs and a method to pass the event in a
controlled manner. When an event is handled in the
post equation assignment section, the solver will not

feel any ill effects of the discontinuity in the timestep
where the state change occurs, since the change is
postponed till after the equation solving. Without
support for event detection a too long step could be
completed before the changed state causes detectable
effects.

Thus, in order to notify the solver of events occur-
ring during an attempted timestep, the model de-
scriptions must be given means to explicitly signal
events. Furthermore, we want to allow event genera-
tion inside functions declared globally but called from
different modules. A key feature of event detection
must be some type of memory, e.g. the film coeffi-
cient function shown above must be able to detect that
the current temperature difference has changed sign
from the previous evaluation. Since the film function
is used by different modules, the old sign can not be
stored in the function but must be remembered by the
calling module, where an A_S could be the bearer of
the memory.The required features could be supplied
by a generic system function:

REAL FUNCTION event_xyz (event_var,
           event_expr)

where the suffix 'xyz' will differentiate between
variants for specific purposes. The functions signal
events when their second argument passes through
zero. The first argument is an assigned state which
tells where the signal was at the last accepted
timestep. Variants are used to trigger on rising or
falling slopes only, and to differentiate between jump
and knee events.

Applied in a film coefficient function using a step-
wise linear curve approximation, the use of event
functions could in principle look like this:

REAL FUNCTION U_film (T_air, T_wall, Diff)
REAL T_air, T_wall, Diff

C INPUT T_air, T_wall, Diff
C OUTPUT Diff

REAL D
D = T_air – T_wall
IF event_k (Diff, D) < 0. THEN

D = –D
ENDIF
IF D < d1 THEN

U_film = a1 *  D + b1
ELSE IF D < d2 THEN

U_film = a2 *  D + b2
...
ENDIF

END

'event_k' signals a knee event, 'Diff' is an A_S
carrying the the old sign. A call of the function from



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/13

a module could look:

c *  T' = A * U_film (T_amb, T, Diff_old)

*  (T_amb – T) .

'Diff_old' is declared in the module as an A_S.

The event functions fill several tasks, they will:

– signal the occurrence and possibly the location of
an event via the time variation of 'event_expr',

– signal the type of event, knee or jump,

– deliver a function value 'event_var',

– update the assigned state 'event_var' with the
expression 'event_expr' (any 'event_var' used in-
side a global function must originally have been
defined at the top level).

The solver will use the signals from the event func-
tions to:

– localize events in time,

– place one evaluation close to knee events, then
start out with small timesteps,

– place two evaluations close on either side of jump
events, invoking initial value calculation after the
passage.

Let's now rewrite the thermostat model, introdu-
cing event functions:

EQUATIONS
0 = out_signal – old_signal ;

ASSIGNMENTS
IF event_p (high, T – T_max) > 0

THEN old_signal := 0.
ELSE IF event_n (low, T – T_min) < 0

THEN old_signal := 1.
ELSE ;

'event_p' triggers on second arguments going
positive, 'event_n' on second arguments going nega-
tive; 'high' and 'low' are A_Ss.

4.9  Summing up discontinuity handling

Handling discontinuities in basically continuous si-
mulation problems, the main concerns are, to:

– safely pass discontinuities without convergence
problems,

– retain control of accuracy in the process,

– achieve these goals without overly complicating
things for the model developer.

The tools supplied in IDA are a good step in that
direction. The area is still under development, so
changes in the specification are likely. Improvements
of the event localizing process can be implemented in
the solver, without affecting the modelling format.

5.  SUMMARY

For building simulation to mature and take full ad-
vantage of the possibilities offered by improving
computer resources, it is essential that development
be based on solid foundations, the most important
features being:

– systematic modelling methods, supported by user
friendly interfaces,

– robust, efficient integration techniques for DAE
systems with discontinuities, affording full control
of accuracy,

– standardized machine readable model documenta-
tion, facilitating international cooperation and re-
use of models.

IDA has been developed with such aims in mind.
It has proved to be a useful tool for practical simula-
tion work, but much essential RD work remains to do;
among the more imminent tasks could be mentioned:

Initial value calculations

– incorporate gradient methods,

– allow for linearized model versions to supply good
starting direction,

– implement automated successive choice of me-
thods.

Utilizing problem structure

– utilize separate storage and integration methods
for FD components with special characteristics,

– further improve module and equation sorting at
large,

Modelling

– refine GUI and develop post processing in coop-
eration with user groups,



Paper 3 , presented at the IBPSA Building Simulation ‘91 conference, Nice, France, August, 1991

3/14

– port modeller to PCs and to other work stations.

In the longer perspective we see hooking up with
CAD and product models as an important field of
research.

Continuous simulation has for a long time been an
art, mainly because mastering of the available tools
has required specialized expertise. Hopefully, the
emergence of good simulation environments will lead
to increased use of quality simulations for research as
well as for all phases of the building process.

ACKNOWLEDGEMENTS

The authors are indebted to the following people who
have participated in the development of the IDA
simulation environment and also contributed to the
paper: Lars Eriksson and Magnus Lindgren from
ITM, Gustaf Söderlind from the Lund Technical
University, and Kjell Kolsaker from the Norwegian
Technical University, Trondheim.

REFERENCES

Bonneau, D.; D. Covalet; D. Gautier; and F.X.
Rongere. 1989. "Manuel de Prise en Main, CLIM
2000, version 0.0." Research Report HE 12 W 2867.
Electricite de France.

Bring, A. 1990. "IDA SOLVER, a User's Guide."
Research Report. Dept. of Building Services Engi-
neering, Royal Institute of Technology, Stockholm.

Buhl, W.F.; E.F. Sowell; J.M. Nataf. 1989. "Object
Oriented Programming, Equation Based Submodels,
and System Reduction in SPANK." Building Simu-
lation '89 Conference (Vancouver).

Clarke, J.A. 1989. "An Object-Oriented Approach to
Building Performance Modelling."

Cools, C.; R. Gicquel; and F.P. Neirac. 1989 "Identi-
fication of Building Reduced Models. Application to
the Characterization of Passive Solar Components."
International Journal for Solar Energy 7: 127-158.

Duff, I.S.; A.M. Erisman; and J.K. Reid. 1986. Direct
Methods for Sparse Matrices. Oxford University
Press.

Elmqvist, H. 1986. "LICS: Language for Implementa-
tion of Control Systems," Dept. of Automatic Control,
Lund Institute of Technology.

Eriksson, L. 1983. "MOLCOL – An Implementation

of One-leg Methods for Partitioned Stiff ODEs."
Report TRITA-NA-8319. Royal Institute of Techno-
logy, Stockholm.

Kolsaker, K. 1991. "An NMF-Based Component Lib-
rary for Fire Simulation" To be presented at IBPSA
BS'91 (Nice, Aug. 20-22).

Kron, G. 1963. Diakoptics, the Piecewise Solution of
Large-scale Systems. Macdonald, London.

Lorenz, F. 1989. "Acausal Information Bonds in
Bond Graph Models" Symposium AIPAC '89 (Nancy,
July 3-5).

Lundh, N.; K. Gustafsson; and G. Söderlind. 1988.
"A PI Step Size Control for the Numerical Integration
of Ordinary Differential Equations." Bit 28: 270-287.

Mattson, S.E. 1986. "On Differential/Algebraic Sys-
tems." Research Report CODEN: LUTFD2/-
(TFRT-7327)/1-026. Dept. of Automatic Control,
Lund Institute of Technology (Sept).

Mattsson, S.E. 1988. "On Model Structuring Con-
cepts," Presented at 4th IFAC Symposium on Com-
puter Aided Design in Control Systems (CADCS),
Beijing, China.

Mattson, S.E. 1989. "An Environment for Model
Development and Simulation." Research Report
CODEN: LUTFD2/(TFRT-3205)/1-030. Lund Ins-
titute of Technology (Sept).

Nakhle, M. 1986. "Neptunix, an Efficient Tool for
Large Scale Systems Simulation." In Proceedings of
the Second International Conference on System
Simulation in Buildings (Liege, Dec. 1-3).

Sahlin, P. 1988. "MODSIM: A Program for Dyna-
mical Modelling and Simulation of Continuous
Systems." In Proceedings of the 30th annual meeting
of the Scandinavian Simulation Society, ISSN
0357-9387.

Sahlin, P. and E.F. Sowell. 1989. "A Neutral Format
for Building Simulation Models." In Proceedings of
IBPSA BS'89 (Vancouver).

Söderlind, G; L.O. Eriksson; A. Bring. 1988. "Nume-
rical Methods for the Simulation of Modular Dy-
namical Systems." Research Report. Swedish Institute
of Applied Mathematics, Gothenburg.



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/1

IDA Modeller

a Man-Model Interface for Building Simulation

Per Sahlin

Dept. of Building Services Engineering
Royal Institute of Technology

ABSTRACT

The limited development potential of current building simulation programs has spurred the design of a new
generation of tools: object oriented simulation environments, where the latest in software technology and
numerical methods is employed to provide users with a framework for more flexible, and thereby more appro-
priate, simulation models. Some of these tools provide the sophisticated user with a rich graphical environment
for interactive model design. We call these model-lab simulation environments. However, it is not always clear
how the new tools will be brought into every day use by non-experts at design offices. In this paper, some
requirements for such use are discussed, and IDA Modeller is presented. IDA Modeller is the front end of IDA,
a general environment for building and energy systems simulation. IDA allows use of model-lab model struc-
turing principles for development of end user design tools. Discussed features of IDA Modeller include: hier-
archical model structure, object user interfaces, and tailored IDA applications. For illustration, the user inter-
face of a recently developed application, multizone air-exchange, is presented. The mathematical models and
methods of this application are treated in an accompanying paper.

1. INTRODUCTION

In recent years, several modelling environments have
been developed for flexible construction, manipula-
tion and maintenance of simulation models. The
accepted term for the new tools is object oriented
simulation environments, which highlights the focus
on modular structure, both for models and for the
software itself. The primary motivation for the new
developments comes from the lack of flexibility of
current building simulation tools. Building simulation
researchers are in remarkable agreement over the
need for new technology, and also over some of the
key ingredients, such as: object oriented program-
ming techniques; a clear separation between model-
ling and simulation (solution) activities; and utilisa-
tion of new GUI techniques.

The majority of the new environments are primarily
intended to offer powerful facilities for interactive
model building, using graphical techniques. For an
experienced engineer, a system model is easily cre-
ated by fetching sub models from a library and inter-
connecting them graphically. Examples of such

model-lab type environments are ALLAN (CISI
1990), SANDYS (Ohlsson 1991), CLIM 2000
(Bonneau et al. 1989), PRESIM-TRNSYS (PRESIM
1988), OMSIM (Mattson and Andersson 1993),
SPARK (Sowell et al. 1993), and MS1 (Lorenz 1991)
(In a loosely defined order of completion). However,
these new programs will, in their basic form, have
little to offer to users of traditional building simula-
tion tools. For these users, the principal interest is not
so much efficient model tailoring, but rather, rapid
and reliable building performance appraisal.

On the other hand, environments such as the UK
Energy Kernel System (Charlesworth et al. 1991) are
clearly aimed at efficient end-user tool production,
perhaps at the expense of  model-lab facilities.

IDA Modeller is a new environment that tries to serve
both the above mentioned goals. It is in essence a
model-lab program, but it also has facilities for cus-
tomising of model user interfaces to cater for various
end-user needs. Used as a programming tool-kit, the
Modeller offers a rich infrastructure for design tool
development. Models may easily be docked to foreign
input-output programs, such as building product
model interfaces. New utilities can be incorporated,

Dept. of Building Services Engineering,
Royal Institute of Technology,  100 44 STOCKHOLM
Phone: +46-8-11 32 38,  fax: +46-8-11 84 32,
e-mail: plurre@engserv.kth.se



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/2

such as optimisation algorithms requiring repeated
simulation runs.

IDA Modeller is primarily intended to serve as front-
end to IDA Solver, but may be adapted to drive other
differential-algebraic equation (DAE) solvers. To-
gether with Neutral Model Format (Sahlin, Bring and
Sowell 1992) translators, IDA Modeller and Solver
form the IDA simulation environment for building
and energy systems simulation. IDA has been devel-
oped at the Swedish Institute of Applied Mathematics
in co-operation with the dept. of Building Services
Engineering at KTH, Stockholm. IDA Solver has
been under testing for a number of years, while a
limited version of the Modeller has been released only
recently.

This paper starts with a discussion of model-lab
environments and their ultimate use to building
simulation end-users. This is followed by a brief
account of some key features of the IDA Modeller.
For illustration a practical example of an IDA appli-
cation is used: multizone air-exchange. This IDA
application is currently tested as a design tool for
clean room facilities at ABB Indoor Climate.

2. MODEL-LAB ENVIRONMENTS

In the previous discussion we have loosely introduced
the term model-lab simulation environment. In this
section we will look a little closer at this concept and
discuss some implications for end-user tool produc-
tion. Let us begin by defining a set of key character-
istics:

• All models adhere to a set of model structuring
principles, that facilitate flexible model construction,
interconnection, and - above all - reuse. Several
structuring principles are possible and formalisms
may be fetched from, e.g., Bond-Graphs, equation
based languages, graphical languages or combina-
tions of these. The principles used in IDA will be
described in some detail.

• Internal behaviour of primitive models is described
by differential-algebraic equations (DAE), or some
equivalent mode of expression. Some environments
also provide methods for expression of non-continu-
ous models.

• A user builds a simulation model by interconnection
of submodels. This is usually done by selecting mod-
els from a library and interconnecting them graphi-
cally.

• Simple means are provided to define new library
models. Primitive models are formulated in a special
modelling language. The functionality of the envi-
ronment may hinge on the characteristics of this
language.

• Parameters are given to specialise models and to
select a suitable numerical solution scheme.

• Boundary conditions are defined to ensure a solv-
able problem. This is a comparatively easy task for
input-output oriented solvers (like TRNSYS), one
simply gives all input variables, but considerably
more demanding for input-output free environments
(like IDA and SPARK). For these environments,
solvable problems will result from many different sets
of given variables, and all these sets are permissible.
This adds tremendous flexibility by increasing the
number of what-if questions that can be studied with
a given model, but puts the burden of defining solv-
able problems on the user.

• Start values are given to state variables, and may be
given to algebraic variables to support calculation of
initial values for nonlinear systems. Depending on
system type this may be a quite demanding task.

In addition to this basic functionality a number of
other useful features may be offered. For example,
transparent access to programs for collection and
treatment of experimental data and to tools for signal
processing and system identification.

Examples of environments that fall within the
boundaries of this definition were given in Section 1.
Some of these environments are mostly intended for a
single field of application, although they are in prin-
ciple general. Others have no application affiliation.

Note that the list of environments would have been
many times longer if ordinary differential equations
(ODE) had been specified rather than DAEs. We will
not go into the difference at length here, but merely
point out that (a) there is a fundamental difference
between ODEs and DAEs (see, e.g., (Mattsson 1986))
and (b) DAEs are often indispensable for building
simulation problems due to frequently occurring
pressure-flow networks.

All of these model-lab environments have been devel-
oped within the last few years, and although some are
quite useful today, a number of fundamental aspects
need to be studied further. Most of the programs are
of considerable complexity and usually a number of
supporting programs are utilised at run time, such as
compilers and computer algebra packages.

Model-lab simulation tools will enable a closer study
of many important physical systems and will be
invaluable in the process of optimising their effi-
ciency. However, it should be recognised that these
sophisticated tools, in their basic form, will be useful
primarily to researchers and research oriented engi-
neers, and will not address the needs of the typical
end-user.

2.1. Meeting End-User Needs

Our view is that a model-lab environment can be an
ideal platform for development of building simulation
end-user tools, but not all model-lab approaches will
work. Provisions must be made for (1) shipment of
sufficiently simple end-user versions and (2) tailoring



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/3

of model interfaces, including model specific code as
well as data.

The first requirement deals with the size and cost of
supporting software that must accompany an end-user
version. Several systems access a (FORTRAN) com-
piler in the modelling-simulation loop. Shipment of
restricted versions, where parameters can be varied
but models remain topologically fixed, is generally
possible without the compiler. However, this is rarely
enough for building simulation purposes, since most
standard problems call for a project specific model
structure. Thermal zoning must be adapted to the
design at hand and the same is true for duct and pipe
network topology.

IDA is based on a technique with precompiled primi-
tive models. Thus, a compiler is only needed for
adding of new component models. This enables
shipment of end-user versions with a fixed library of
primitive models. These basic models can then be
interconnected into complex configurations by any
user. An overview of the numerical techniques of IDA
is given in (Sahlin and Bring 1991).

The second requirement concerns added functionality,
not just convenience and cost. It deals with the possi-
bility of creating easy-to-use end-user applications
with a limited and targeted functionality for a specific
class of simulation problems. It is  necessary to both
cut down on user freedom and to provide additional
support. In some model-lab approaches, the  model-
ling language itself is the only user-accessible mode
of expression and the language rarely provides suffi-
cient means for good user interface design.

The route taken in IDA is to limit the role of the
modelling language to that of  expressing primitive
models. Beyond that, an application writer has access
to the entire Common Lisp language - plus any other
callable language - for application design. Further-
more, the IDA model structure is designed to handle
user-defined objects (code and data), specific to an
application. The next few sections are devoted to a
brief description of the IDA model structure and tools
for application writing in the IDA framework.

3. FEATURES OF IDA MODELLER

3.1. Model Structuring Principles

Most primitive models in IDA Modeller are described
as differential-algebraic systems of equations, i.e. a
free mixture of first order differential and algebraic
equations. Such models are referred to as equation
objects in IDA terminology. Equation objects are
specialised into classes corresponding to models of
physical components, like walls, windows, boilers,
coils, etc. Equation objects are in turn built up as
aggregates of lower level objects such as parameter
and variable objects. The IDA concept of an equation
object is roughly similar to the continuous_model

type in the Neutral Model Format (NMF) (Sahlin,
Bring, and Sowell 1992) and IDA equation object
class definitions are generally obtained by automatic
translation from NMF.

Complex models are formulated by connection of
equation objects. More specifically the interfaces of
two equation objects are joined. The interfaces of an
object define which internal variables that may be
connected to the outside world. The interfaces of an
IDA object correspond to the links of an NMF model.

Macro objects are collections of other objects, e.g.
equation objects or other macro objects. Macro objects
are very fundamental to the IDA model structure
since they provide the means to organise models
hierarchically. The IDA macro object is similar to a
directory on the disk of a computer; it holds other
macros (directories) and objects (files).

Macro objects can play two different roles. Macros
can - like directories - be used for library purposes
only, i.e. as nodes in a hierarchical access structure.
In this role they are referred to as library macros.
However, if the submodels of the macro are connected
into a meaningful system model, the macro is referred
to as a system macro. Any system macro may be
simulated as it is or used as a building block for
creation of more complex models (during creation of
a meaningful system, a system macro may be only
partially connected and not suited for simulation.)

All IDA objects are organised in a single tree of
macros under a library macro named root . The first
levels of this tree, hold library macros only, but
towards the leafs, system macros start to appear.

The analogy with directories on the disk is more than
just a pedagogical tool. In the Modeller each macro -
system or library - actually does correspond to a
physical directory with the same name, i.e. there is a
one to one mapping between the macro tree and a
corresponding directory tree on the disk. When ex-
periments are performed on a system macro all files
related to this activity are stored in the corresponding
directory.

root

library air_exchange

magnus

clean_room

flakt

testcase

vent_ex1

vent_ex2

LIB

LIB

LIB

LIB

SYS

SYS

SYS

SYS

LIB

Figure 1. A selection of macros.



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/4

Any object in the tree can be copied and
used as building material for new models.
There is no formal distinction between
models from previous projects, the ongo-
ing project, or the "library" branch of the
tree. The library branch is merely a con-
venient location for models that are of
more general interest; models intended for
reuse are naturally moved there, once they
are sufficiently tested.

In a file sharing environment all IDA
users should normally interact with the
same model tree, and user subdivisions
should be allocated within this tree. There
are facilities for exporting and importing
entire branches between different IDA
environments, provided the same class
definitions have been made in both places.
Automated export and import of class
definitions are planned facilities.

3.2. Model User Interfaces

Interacting with IDA involves navigation
in the model tree. All available informa-
tion is located in this structure, or in the
associated disk structure. Each IDA object
is equipped with its own user interface. A
special part of the object, called the form,
specifies how the object is to be presented
to the user and what actions the user may
perform. The form of an object enables
object presentations to vary according to
context and user category. Presentations
and support facilities can be tailored for
three different user types:

Component Makers is the most proficient
group of users, with access to all interac-
tive facilities;

System Makers build system models out of
existing component models;

End Users perform parameter studies on
already existing system models.

Some object types, such as continuous
variables, have standard forms that rarely
change. Other objects such as component
models have simple, automatically gener-
ated, default forms, for the model experi-
mentation phase. They can be improved
once the model is ready for external use.

Object forms can be substructured in
multiple levels, as indicated in Figures 2
and 3, providing a hypertext oriented
presentation method. Subforms may be
automatically opened as the main form is
opened, to provide explicit instructions
for, e.g., End Users. The form presenta-

Figure 2. The default presentation of an air exchange zone
model, with two open subforms, showing some details of the

model

Figure 3. A tailored form for the zone model, with a supporting
subform open.

Figure 4. An air exchange building model (a system macro) with
one open submacro.



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/5

tion can also be enhanced with figures, built with
polylines and arcs.

The object interfaces that have been developed so far
are mostly simple ones, like the one in Figure 3, but
they can in principle be quite sophisticated with
various chains of dialogue boxes, etc.

The main feature of a system macro form is generally
the schematic model itself, which can be opened and
further explored (fig. 4 and 5).

3.3. Writing and Using Applications

An IDA application is (1) a compatible family of
component models and (2) a set of tools for simplify-
ing user interaction with the models.

A compatible model family is a group of models that
are designed to operate together and cover the model-
ling needs of a certain problem area.
A sample family (fig. 5), for air-
exchange and infiltration modelling,
is presented below.

Application support tools simplify or
completely automate model building,
parametrization, simulation, and
post-processing. They bridge the gap
between straight model-lab usage of
the models - which is always possible
- and design tool usage, i.e. using the
simulation environment as a collec-
tion of separate but similar programs
(applications). In this perspective the
simulation environment is concep-
tually akin to, e.g., MS-Windows - a
collection of separate programs
having the same "look and feel" and
sharing system resources.

The tools are tied to one or more
application macro classes. To have
access to the application tools, a user
must build models within an instance
of an application macro. A new work
session is generally initiated by
copying and naming an application
macro, either a previous project
macro or a blank, empty macro. This
is similar to Windows file associa-
tions, i.e. a file which "knows" what
application it was created with.
Contrary to Windows, this is the only
way of starting an IDA application;
the application cannot be started on
its own.

Application support tools are re-
quired to use the IDA (macro) struc-
ture for data organisation. Other
system resources may or may not be
used. There is, e.g.,  no strict re-
quirement that IDA forms are used

for user interaction. In principle, IDA can call any
program for model processing, e.g. an established
simulation tool interface can be called to request data
from a user in a familiar way.

However, in most cases application writers will use
the native resources, since significant savings can be
expected. IDA offers complete automated support for
object storage, retrieval and copy as well as the forms
package for user interaction.

3.4. A Sample Application - Multizone
       Air-Exchange

The Multizone Air-Exchange (MAE) models predict
pressure levels, flows and transports of contamination
and energy in a zone network and in the associated
ventilation system. Presently, the functionality is
roughly the same as the Movecomp program (Bring

Figure 5. The MAE library of primitive models.

Figure 6. A clean room model without ventilation system. A vector
terminal and one of its components has been opened.



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/6

and Herrlin 1991). An overview of the models and
numerical methods is presented in an accompanying
paper (Bring and Sahlin 1993). The primary advan-
tage with the IDA implementation of the MAE mod-
els is the possibility of coupling them with thermal
models. However, here we will concentrate on the
MAE application alone.

The present version of the MAE application utilises
the basic model-lab functionality of IDA for model
building. The user copies, connects, and gives com-
ponent parameters in the standard fashion. In the
future much of this work could be done by accessing
some CAD-representation of the system. MAE sup-
port tools are used for checking model consistency,
automatic parameter propagation, simulation problem
formulation, and post-processing support.

Generally, application tools can either, like the MAE
tools, be available for use as needed, or impose them-
selves and direct the user rigidly through every step -
depending on user sophistication.

In the MAE framework a user can, after having
completed the model building phase, open a macro
subform 'Global Data' (fig. 7) and enter parameters
like outside temperature, wind properties, and build-
ing pressure coefficients (how the pressures at the
faces of the building vary with wind loading).

After completion of the 'Global Data' forms, the
'invoke' button is pressed. The 'invoke' algorithm will
check model consistency (as far as possible), propa-
gate global data, and set up a standard solvable
simulation problem.

After a steady state simulation has
been carried out, results can be
studied either by inspection of indi-
vidual variables or by pressing the
MAE 'output' button, which sets up a
special display (fig. 8)where zones
are oriented vertically according to
relative pressure and where labelled
lines between zones indicate flows
and flow paths.

Generally, for transient simulations,
a user may view the development of
individual variable values as the
simulation progresses. In model-lab
usage of IDA, the operator may also
stop the simulation at any time and
inspect system state and then resume
simulation or terminate.

4. CURRENT STATE

Development of IDA Modeller
commenced in 1987. Since then,
some five man years have been
devoted to development and experi-
mentation. Until recently, the devel-
opment platform has been Lucid
Common Lisp on Apollo worksta-
tions. During the fall of 1992, IDA
Modeller was ported to the Allegro
Common Lisp environment under
MS-Windows on the PC. Present
minimum hardware requirement is a
386 PC with 8 Mb core memory;
more enjoyable is a 486 system with
16 Mb. A full IDA development
environment requires access to
Common Lisp and FORTRAN
compilers, but end-user versions may
be shipped as stand alone programs
without need for licences for support-
ing software.

Figure 7. The MAE Global Data subform.

Figure 8. The MAE output form. A door is open between the fill and
prep rooms, hence the slight difference in pressure. Zone models can
be opened and parameter runs carried out directly from this form.



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/7

Due to lacking standards in 1987, proprietary object
and window systems were developed in the worksta-
tion setting. Since then, the Common Lisp Object
System (CLOS) has been standardised and several
GUI systems have gained wider acceptance. The
present Windows port is rather rough, with only a
minimum of standard functionality, i.e. the Modeller
does not yet have Windows "look and feel." The IDA
object system has recently been replaced with CLOS,
leaving original object constructor and manipulator
functions intact.

Some of the model-lab functionality for transient
simulation that was present on Apollo has at this
point (March '93) not yet been implemented in the
PC-setting. The first priority has been to get the
necessary (steady state) MAE features in operation.
Similarly, component modelling and application
writing still require a significant amount of handi-
craft.

However, despite the mentioned shortcomings, the
full IDA system with the MAE application has proved
useful to novel industrial users (system makers) with
very limited experience of similar software.

5. CONCLUSIONS

The primary objective of the IDA-project as a whole
has been to investigate the viability of a model-lab
simulation environment as a framework for building
simulation and design tool production. Anticipated
problems included insufficient efficiency, robustness,
and compactness of end-user tools. Other concerns
were the applicability of general numerical methods
to building simulation problems ranging from tradi-
tional thermal modelling to equipment control and
fluid flow problems.

Fortunately, none of the potential obstacles have
proved to be insurmountable. The cost of a general
approach is entirely acceptable, especially when the
improved performance of affordable hardware is
taken into consideration. Traditional thermal simula-
tion problems require roughly two to five times more
processing power with the suggested approach. This
should be compared to desktop computer improve-
ments over the last few years.

The size of a simulation environment like IDA may
seem to be a problem; a naked (no models) environ-
ment occupies on the order of five megabytes of
memory, with a few applications and examples per-
haps eight. Of course the same price/performance
argument as before applies here as well. However,
since most users will host more than one application
and several models, one should really look at the
marginal size cost of each additional model and ap-
plication in the environment, rather than the size of a
naked environment. Although no systematic study of
this has been done, we can safely say that this cost is

of the same order as that of tailored stand alone pro-
grams.

The most pleasing results relate to the range of prob-
lem types that may be treated. Since the power of
variable timestep and order implicit DAE solvers are
available to non-experts in IDA, users are generally
delighted with being able to solve problems that
previously were out of reach. The joy of writing down
equations and getting results automatically or improv-
ing building performance by playing with new system
solutions is most likely what will make the new
simulation environments popular.

In conclusion, the IDA project has resulted in a fea-
sible new approach to design tool development. The
software is sufficiently mature to serve as safe raw
material for commercial development.

REFERENCES
Bonneau, D; Covalet, D; Gautier, D; Rongere F-X.
1989. Manuel de Prise en Main - CLIM 2000. HE 12 W
2867. EDF - Direction des Etudes et Recherches, Moret-
sur-Loing, France.

Bring, A; Herrlin, M.  1991. Bris Data AB, Calscand
International. User's Manual, MOVECOMP-PC, An Air
Infiltration and Ventilation System Program.

Bring, A; Sahlin, P. 1993. "Modelling Air Flows and
Buildings with NMF and IDA." To appear in Proceedings
of the IBPSA Building Simulation '93 (Adelaide, Aug.).

Charlesworth, P., Clarke, J.A., Hammond, G., Irving,
A., James, K., Lee, B., Lockley, S., Mac Randal, D.,
Tang, D., Wiltshire, T.J., Wright, A.J., "The Energy
Kernel System"  In Proceedings of the IBPSA Building
Simulation '91 (Nice, Aug.)

CISI INGENIERIE  1990. Le Logiciel ALLAN  - ALLAN
Simulation - Présentation Générale. Rungis, France.

Lorenz, F. 1991. "Modelling Platform with Multiple
Representation Formalisms."  In Proceedings of the IBPSA
Building Simulation '91 (Nice, Aug.).

Mattson, S.E. 1986. "On Differential/Algebraic Systems."
Report CODEN: LUTFD2/(TFRT-7327)/1-026. Dept. of
Automatic Control, Lund Institute of Technology, Sweden.

Mattson, S.E; Andersson, M. 1993. "Omola - An Object-
Oriented Modeling Language."  In Recent Advances in
Computer Aided Control Systems Engineering, M. Jamshidi
and C.J. Herget, Elsevier Science Publishers, Holland.

Ohlsson, B. 1991. "SANDYS." Research Report
RES/KEB/RM-91/001. ABB Corporate Research, Västerås,
Sweden.

PRESIM, Working Group. 1988. Manual for PRESIM -
A Preprocessor for Producing TRNSYS Input Data. Solar
Energy Research Center, Univ. of Borlänge, Sweden.

Sahlin, P; Bring, A. 1991. "IDA Solver - a Tool for
Building and Energy Systems Simulation." In Proceedings
of the IBPSA Building Simulation '91 (Nice, Aug.).

Sahlin, P; Bring, A; Sowell, E. 1992. "The Neutral Model
Format for Building Simulation." Bulletin 24. Dept. of



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/8

Building Services Engineering, Royal Institute of Technol-
ogy, Stockholm, Sweden.

Sowell, E. F; Winkelmann, F.C; Buhl, W.F; Erdem
A.E. 1993. "Recent Improvements in SPARK: Strong
Component Decomposition, Multi-valued Objects, and
Graphical Interface."  To appear in Proceedings of the
IBPSA Building Simulation '93 (Adelaide, Aug.).



Paper 4 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August, 1993

4/9



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/1

 Modelling Air Flows and Buildings with NMF
and IDA

Axel Bring      Per Sahlin

Building Engineering Services
Royal Institute of Technology

ABSTRACT

New object oriented simulation environments offer dramatically improved possibilities for simulation of
coupled systems. In contrast to traditional building simulation, where separate, stand-alone tools are used for
each simulation task, the new environments will offer a unified framework for all simulation problems. For de-
sign tool users this leads to two major advantages: (1) model coupling and comparison of results between dif-
ferent simulation applications will be practical, and (2) usage and input data will be standardised across ap-
plications. Thereby tool usability will increase considerably. Furthermore, man-time spent on model
development and maintenance is expected to decrease, making it feasible to tailor appropriate models to each
task, and thus improve the quality of simulation results. In this paper, we report our experiences implementing
a set of models for multi-zone air-exchange (MAE) in the general simulation environment IDA. Although MAE
analysis is yet far from a standard industrial practice, several tailored tools have been developed. For
comparison between general programs and specialised, the MAE models are extremely challenging, since the
model structure can be utilised to an unusual degree in the specialised tools. In spite of this, the results
obtained are encouraging in terms of processing time as well as numerical reliability (robustness). The paper
presents a selection of the models, including the full Neutral Model Format (NMF) code, a discussion of
numerical methods, and some general conclusions with bearing on simulation tool development.

1. INTRODUCTION

Studies of inter-zonal air flows in multi zone build-
ings have attracted interest for considerable time.
Several tools for handling of these problems have
emerged during the last decade, e.g., AIRNET (Walton
1989), Movecomp (Bring and Herrlin 1991), and
COMIS (Feustel and Rayner-Hooson 1990). These
tools are tailored to handle air flows only, leaving it
to the user to choose thermal boundary conditions.

The interaction between mass transports (air or
water) and heat transfer in buildings is frequently
significant. Thus, simulations of coupled systems are
of interest, but, so far, fairly little work has been done
in this field. For instance, (Hensen 1991) reports on
such work using the ESP environment, but overall

there has been a lack of adequate software for this
type of studies.

Since the mid eighties, general, object oriented
environments for building simulation are under
development and in various stages of completion, e.g.
CLIM 2000, EKS, SPARK, ZOOM. One important aim
of these environments is to facilitate studies of
coupled buildings and systems. The new tools will
offer a unified handling of all component models, and
thus allow simultaneous simulation of subsystems that
hitherto have been handled by different programs.
The general tools will normally be computationally
less efficient than the specialised tools replaced;
almost universally this drawback will be outweighed
by the gain in man time efficiency.

Using the modern simulation environment IDA, a
model family has been developed for studies of

Dept. of Building Services Engineering,
Royal Institute of Technology,  100 44 STOCKHOLM
phone: +46-8-11 32 38,  fax: +46-8-11 84 32,
e-mail: abring   or    plurre@engserv.kth.se



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/1

NMF-BASED ASPECT MODELS IN STEP/EXPRESS FOR
BUILDING AND PROCESS PLANT SIMULATION

Per Sahlin
Building Services Engineering
Royal Institute of Technology
100 44 STOCKHOLM, SWEDEN
e-mail:  plurre@kth.se

Curt Johansson
Construction Management
Royal Institute of Technology
100 44 STOCKHOLM, SWEDEN
e-mail:  curt@ce.kth.se

Abstract

Automated design performance assessment through simulation will be an important
aspect of future product model technology. The research in this area has so far been
focused on traditional simulation tools. However, the rapid development of new
structurally different tools calls for a shift of attention. New object-oriented methods
of describing simulation models can and should be integrated with the product model
itself. In this paper we will briefly review a current development trend in continuous
simulation and present a new language for model description, Neutral Model Format
(NMF), which in recent years has gained considerable attention in the field of
building simulation. The possibility of joining the continued NMF development with
the STEP domain is discussed and some examples of NMF based EXPRESS models
are presented.

1. INTRODUCTION

One driving factor behind product model research is that it will give designers direct
access to easy and repeated design evaluation. Obviously, cost estimates, bills of
materials, and various drawings should be easily generated from product model data,
but of equal importance are measures of the dynamical performance of the design at
hand. In the AEC field the EEC COMBINE project (phase 1) has demonstrated
feasibility of data mapping from an EXPRESS-based data model of a building to a
range of established building performance evaluation (BPE) tools [Augenbroe 1993].
Phase 2 of this project seeks to put this technology to use among practitioners in the
field. Another industrial sector with considerable activity in both product modelling
and simulation is the process industry.

The authors of this paper have for some time worked with new simulation techniques
and languages for continuous modular systems. These techniques are applicable to a



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/2

large class of static and dynamical simulation problems in, e.g., the building, energy
and process industries. One important aspect of this work has been involvement in the
definition of a standard format, Neutral Model Format (NMF), for expression of
component level simulation models. The purpose of this paper is to investigate the
applicability of STEP technology in the continuation of this work.

Currently, component models (primitive models) are automatically translated from
NMF to the proprietary format of the target simulation environment. For example, an
NMF model of an axial fan is used to generate an axial fan class in, e.g. IDA [Sahlin
1991]. The class is then instantiated in the target environment. The instances are
furnished with suitable parameters, and incorporated into a system model. The next
natural step in the NMF development is to formulate an environment independent way
of expressing and communicating instantiated system models as well. Several authors
have already suggested and even implemented such NMF extensions [Kolsaker 1994a,
Lorenz 1994]. Since object oriented simulation is a highly relevant topic for product
modelling efforts [Augenbroe 1991], we will analyze the implications of using
EXPRESS for data modelling of NMF instantiated system models.

In the next two sections a brief overview is given of current work on so called object
oriented simulation methods, mainly in the context of building simulation, and of the
Neutral Model Format.

2. OBJECT ORIENTED SIMULATION ENVIRONMENTS

The term object oriented is perhaps not the best descriptor for these tools but it has
nevertheless become widely used and we will use it here as well. The object orienta-
tion concerns mainly the modularity of the physical systems that are being modelled
and not so much software techniques. Naturally, most recent developments also use
object oriented programming to varying degrees.

2.1 PHYSICAL SYSTEMS AND MATHEMATICAL MODELS

Physical systems that we aim to simulate are modular in nature, i.e. they naturally
decompose into subsystems. Frequently, identical subsystems are repeated a number
of times in a model, a fact that is taken advantage of in many tools. Furthermore, the
systems should have a basically continuous behavior, meaning that equations used to
describe them, as well as forcing functions, will have a limited number of discontinui-
ties. Purely event driven systems are excluded.

Models may be expressed in several ways. Bond graphs, linear graphs, block dia-
grams, electrical analogies, and mathematical equations are frequently used modes of
expression. Also used, for mainly historical reasons, are subroutines in some pro-
gramming language. A discussion of pros and cons of various methods of description
can be found in [Lorenz 1987].

If characterized by equations, the physical systems under consideration will require
both algebraic and differential equations. Differential equations can be either ordinary
(ODE) or partial (PDE), although current tools require that PDEs are explicitly
discretized in space and thus turned into ODEs. Note that in contrast to many widely
used commercial tools the simulation environments we are concerned with here are



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/3

not limited to ODEs only. They allow a free mixture of algebraic and ordinary differ-
ential equations generally referred to as differential-algebraic systems of equations
(DAE).

Furthermore, the simulation tools under discussion are rarely used for applications
where a strict formalism for generating governing equations exists. In, e.g., electrical
circuit analysis, multibody mechanics, or structural analysis special purpose systems
may be more advantageous.

Examples of physical systems that fit this description can be found in many fields.
Chemical process plant simulation is a significant area of application. Energy distribu-
tion networks and plants is another. The authors of this paper have mainly worked
with building related systems and important applications within this field are: thermal
processes in walls and spaces; air and water based distribution systems and plants; and
automatic control.

2.2 SEPARATION OF MODELLING AND SOLVING ACTIVITIES

In contrast to many established design tools, e.g. in building simulation, OOSEs
separate strictly between the modelling and subsequent system solution activities. A
modelling tool is often used for model formulation. This tool generates a system
model, generally expressed in a modelling language. The model is then treated by a
solver. An important benefit of a separate solver is that it may be altered or even
exchanged with minimal interference with the modelling environment.

Key characteristics of the modelling language, such as expressiveness and level of
standardization, are critical to the usefulness and development potential of the overall
OOSE. The Neutral Model Format is part of such a modelling language. This paper
describes one way towards a complete modelling language that may be standardized.

2.3 TARGET USERS AND SOFTWARE STRUCTURE

Most of the simulation tools under discussion are intended for quite sophisticated
users, who are well versed in mathematical modelling, numerical methods and ad-
vanced use of computers. These tools are not directly suited for designers, without
special simulation expertise, that use simulation as one of several methods for design
evaluation. However, for the expert, they generally provide an efficient graphical
environment for model building, simulation and analysis.

Other tools, e.g. EKS and IDA, are primarily intended for efficient design tool
production, and the normal end user will rarely interact directly with the underlying
OOSE techniques.

2.4 AVAILABLE AND EMERGING OOSEs

A few tools and environments with the discussed main characteristics are already
matured and available and others are under development. Among the available ones
are e.g.:

TRNSYS was developed during the seventies at the Solar Energy Lab at the Univer-
sity of Wisconsin. It was one of the first modular simulation solvers for DAEs and it is



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/4

distributed as a Public Domain product. Several compatible modelling tools have been
developed, e.g. PRESIM.

HVACSIM+  is a solver with similar characteristics as TRNSYS in terms of model
format and structure, but more recent numerical techniques are utilized. It was
developed by NIST in Maryland and released in the mid eighties on a Public Domain
basis.

SANDYS is a general DAE solver and textual modelling environment developed by
ASEA, Sweden, in the early eighties. It is commercially available from ABB Corpo-
rate Research.

ALLAN-NEPTUNIX  is a graphical modeller and solver combination developed by
Gaz de France and CISI Engineering. It is since a few years commercially available
from the developers.

ESACAP is a recently developed DAE solver by the European Space Agency. It is
commercially available from STANSIM, Denmark.

DYMOLA  is a text based commercial modelling tool with symbolic algebra capabili-
ties and interfaces to several solvers. A GUI is under development. Available from
DYNASIM, Lund, Sweden.

Some tools under development are:

CLIM 2000, a graphical modelling tool for building applications, is developed by
Electricite de France.

MS1 is a graphical multi input language modeller with interfaces to several solvers by
Lorenz Consulting, Liege, Belgium in cooperation with Electricite de France.

IDA , a graphical modelling environment and solver, is under development at the
Swedish Institute of Applied Mathematics.

SPARK is a solver and graphical model editor under development at LBL, Berkeley,
California.

OMSIM is a graphical modelling tool under development at the Dept. of Automatic
Control at the Lund Institute of Technology, Sweden.

EKS is a C++ toolkit for development of energy related simulation design tools, by
among others the Univ. of Strathclyde, Scotland.

3. THE NEUTRAL MODEL FORMAT

Without a comprehensive, validated library of ready made component models in a
relevant application area most simulation environments are rather useless. To develop
all necessary models from scratch is, in most projects, quite unrealistic. And since the
cost of developing a substantial library easily exceeds the development cost of the
simulation tool itself, it is important to be able to reuse what other people already
have done. This was the basic motivation for proposing a text based neutral model



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/5

format to the building simulation community in 1989 [Sahlin and Sowell 1989]. Since
then the proposal has attracted a great deal of interest from environment developers
and users in several application fields. Prototype translators have been developed for
IDA [Kolsaker 1994a], SPARK [Nataf 1994] and ESACAP [Pelletret 1994a].
Translator development projects have been funded for TRNSYS, HVACSIM+
[ASHRAE 1994], and MS1 [Lorenz 1994]. Export and import capabilities are
planned and partly implemented for ALLAN-NEPTUNIX [Jeandel 1994].

Pending formal standardization, ASHRAE (American Society of Heating, Refrigerat-
ing, and Air-conditioning Engineers) has formed an ad hoc committee that approves
changes to the present format.

NMF has two main objectives: (1) models can be automatically translated into the
local representation of several simulation environments, i.e. the format is program
neutral and machine readable; and (2) models should be easy to understand and
express for non-experts. The first objective enables development of common model
libraries, which can be accessed from a number of simulation environments.

3.1 BASIC NMF FEATURES

Internal component model behavior is described by a combination of algebraic and
ordinary differential equations. Equations may be written in any order and in the form

<expression> = <expression>;

NMF only states equation models, while solution of equations is, in some cases, left
to the target environment (e.g. IDA, or SPARK), or the NMF translator in others (e.g.
TRNSYS, or HVACSIM+).

NMF supports model encapsulation through a link concept, i.e. models may only
interact via variables appearing in LINK statements. To enhance and encourage model
plug compatibility, links and variables are globally typed. The idea is that basic list of
such types should be included in each revision of the standard, but that users may add
to the list as need arise. A selection of such global types is:



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/6

A quantity type includes a physical unit and information about potential (across) or
flow (through) type. A link type is simply an ordered list of quantity types. Let us now
look at an example of a rather simple NMF model using the heat equation in one
dimension.

Ta

Qa

Tb

Qb

Figure 1. A finite difference model of a wall with one homogeneous layer. Tempe-
rature and heatflux on each terminal.

QUANTITY_TYPES

/* type name      unit              kind */

   Area           "m2"              CROSS
   Control        "dimless"         CROSS
   Density        "kg/m3"           CROSS
   Factor         "dimless"         CROSS
   HeatCap        "J/(K)"           CROSS
   HeatCapA       "J/(K m2)"        CROSS
   HeatCapM       "J/(kg K)"        CROSS
   HeatCond       "W/(K)"           THRU
   HeatFlux       "W"               THRU
   HeatFlux_k     "kW"              THRU
   Temp           "Deg-C"           CROSS

LINK_TYPES

/* type name       variable types... */

/* generic        (arbitrary, arbitrary,...) implicitly
defined */
   F              (Force)
   FL             (Force,Length)
   Q              (HeatFlux)
   T              (Temp)
   PMT            (Pressure, MassFlow, Temp)
   PMTQ           (Pressure, MassFlow, Temp, HeatFlux)

   MoistAir       (Pressure, MassFlow, Temp, HumRatio)
   BidirFlow      (Pressure, MassFlow, Enthalpy, HeatFlux)



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/7

CONTINUOUS_MODEL tq_hom_wall

ABSTRACT
“A 1D finite difference wall model. One homogeneous layer.
TQ interfaces on both sides.”

EQUATIONS
/* space discretized heat equation */
c_coeff * T’[1] = Taa - 2.*T[1] + T[2] ;
c_coeff * T’[n] = T[n - 1] - 2. * T[n] + Tbb ;

FOR i = 2, (n -1)
c_coeff * T’[i] = T[i - 1] - 2. * T[i] + T[i + 1];
END_FOR ;
/* boundary equations */
0 = -Ta + .5 * (Taa + T[1]) ;
0 = -Tb + .5 * (T[n] + Tbb) ;
0 = -Qa + d_coeff * (Taa - T[1]) ;
0 = -Qb + d_coeff * (Tbb - T[n]) ;

LINKS
/*  type           name      variables ....  */
    TQ             a_side    Ta, POS_IN Qa ;
    TQ             b_side    Tb, POS_IN Qb ;

VARIABLES
/* type    name        role def     min    max      description*/
  Temp     T[n]        OUT   20. abs_zero  BIG  “temperature profile”
  Temp     Ta          OUT   20. abs_zero  BIG  “a-side surface temp”
  Temp     Tb          OUT   20. abs_zero  BIG  “b-side surface temp”
  Temp     Taa         OUT   20. abs_zero  BIG  “a-side virtual temp”
  Temp     Tbb         OUT   20. abs_zero  BIG  “b-side virtual temp”
  HeatFlux Qa          IN     0.    -BIG   BIG  “a-side entering heat”
  HeatFlux Qb          IN     0.    -BIG   BIG  “b-side entering heat”

MODEL_PARAMETERS
/* type    name       role  def mi  max        description  */
  INT      n          SMP    3   3  BIGINT “number of temp layers”

PARAMETERS
/*   type    name       role   [def   [min   max]]   description*/

/* supplied parameters */
  Area      a            S_P    10.  SMALL BIG  “wall area”
  Length    thick        S_P   .2    SMALL BIG  “wall total thickness”
  HeatCondL lambda       S_P   0.5   SMALL BIG  “heat transfer coeff”
  Density   rho          S_P   2000  SMALL BIG  “wall density”
  HeatCapM  cp           S_P   900.  SMALL BIG  “wall heat capacity”

/* computed parameters */
  generic   d_coeff      C_P              “lambda*a/dx”
  Length    dx           C_P              “layer thickness”
  generic   c_coeff      C_P              “rho*cp*dx*dx/(lambda*3600.)”

PARAMETER_PROCESSING
dx := thick / n ;
c_coeff := rho * cp * dx * dx / (lambda * 3600.) ;
d_coeff := lambda * a * dx ;

END_MODEL

To enable direct model translation to input-output oriented environments (e.g.
TRNSYS, or HVACSIM+), variable declarations have a role attribute indicating IN for
given variables and OUT for calculated ones.

Variables and parameters may be vectors or matrices. A parameter is anything that
must remain constant throughout every simulation. Links may also be vectors, thus
allowing models with variable number of ports. Vector and matrix dimensions are
governed by a special type of parameter, model parameters. Regular and model



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/8

parameters are divided into two categories, user supplied and computed, algorithmic
computation of which is described in the parameter processing section.

Arbitrary foreign functions in Fortran 77 or C may be defined, either globally or
locally within a model.

Special functions are defined to handle discontinuities, hysteresis, linearization, and
errors. A more complete account of NMF is given in the reference report [Sahlin,
Bring, and Sowell 1994].

3.2 NMF DEVELOPMENT DIRECTIONS

Currently, a reasonable agreement about the NMF grammar has been reached.
Developers can count on stability of the present format and backward compatibility.
This enables us to get on with the work of defining NMF-based component model
libraries and to develop further NMF translators. Several substantial model libraries
have already been developed and many more are underway.

Regarding the format itself, several extensions have been suggested. In the discussion
of these it is important to bear in mind that, at the time of the original proposal, NMF
was not primarily intended as a replacement of existing proprietary model languages,
but as a complement, enabling component model exchange and library building.

Planned extensions and supporting tools that fall within the scope of the original NMF
intentions are:

1. An NMF handbook with style guidelines for model architecture. The current NMF
manual is completely insufficient as a pedagogical tool. (Encompassed by funded
project [ASHRAE 1994].)

2. Model documentation guidelines and templates, storage and retrieval mechanisms.
This area is addressed by Pelletret in a recent (draft) proposal [Pelletret 1994]. The
ESPRIT OLMECO project - development of a large mechatronics library - is another
source of inspiration.

3. Investigation regarding adaptable models, through property inheritance and/or
through hierarchical modelling. Property inheritance between models may result in
better model reuse but it will on the other hand also have negative effects on model
portability, since inheritance trees must be passed when shipping a model. This leads
to reconciliation problems if a similar, but not identical, tree exists on the receiving
side.

4. Model library structure and management tools, including mechanisms for model
browsing and retrieval.

5. Discrete time (sampling) models. This is necessary to study sampling control
circuits.

There are several additional items that belong in this list - such as formal rules for
permitted model connections and a language or keyword system for expression of
model assumptions - that are omitted here due to space.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/9

In the context of a complete modelling language the present format lacks the ability to
express:

1. Component model instances, with parameter values, initial values of all variables,
and information about boundary variables..

2. Hierarchical systems of such instances.

3. Numerical simulation parameters, such as tolerances, stepsize limits, algorithm
selection commands, that can be generalized for a large class of solvers.

4. Graphical schemata for user presentation of simulation models. Large models are
much easier to comprehend if they are described graphically.

The drive for development of a complete NMF-based modelling language comes
primarily from developers of new modelling tools, who see little reason to develop
proprietary formats. Two such developers have made concrete proposals and imple-
mentations are well underway [Lorenz 1990], [Kolsaker 1994].

4. WHY STEP/EXPRESS?

STEP (STandard for the Exchange of Product model data) is an international standard
for product descriptions [ISO TC 184 1993]. The data for these descriptions are
modelled in a special language called EXPRESS, which is in itself part of the STEP
standard. EXPRESS is an object oriented language that is particularly well suited for
information modelling. A subset of EXPRESS is EXPRESS-G, a fully graphical
language for data modelling. EXPRESS-G schemata can automatically be translated
into textual EXPRESS code, which in turn can be translated into, e.g., C++ class
definitions. A number of tools and related standards are (and will be) available for
STEP/EXPRESS. A (default) textual representation of any EXPRESS schema is for
example implicitly defined (STEP physical file).

Since the first proposal in 1989 the discussion about various NMF-constructs has
focused on the grammar. The textual appearance of selected models has been the main
object. This is of course quite appropriate for the equation core of component models,
but for instantiated system models and related data it may be more fruitful to regard
data models directly, and to treat textual representation as one of several possible
views. EXPRESS seems to be an appropriate vehicle for the future NMF discussion.
Further reasons for the employment of STEP technology include:

• Simulation models will most likely be an important aspect of many product model
applications, and they should therefore be encompassed by STEP, either as pure
aspect models or as parts of global models

• Many existing STEP/EXPRESS resources will be useful for development of NMF-
oriented application tools

• The fact that STEP physical files most likely will be more difficult to read (for
humans) than a tailored high level language is of little consequence for realistic-size
simulation models, which generally are of such magnitude that they rarely are



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/10

printed and studied in their raw form

4.1 PRESENT NMF IN STEP

In this our initial work we have chosen to focus directly on the imminent problem of
defining conceptual models of NMF instances, and of hierarchical systems of such
instances. This means that nothing is said about the internal behavior, e.g. equations,
of a model. Only its state is encompassed, and it is assumed that the underlying NMF
model is known to all parties.

Another interesting issue is of course the conceptual models of internal behavior as
well, i.e. to model the present NMF in EXPRESS, with entities such as equation,
if_then_else_clause, etc. Such models are necessary for development of NMF parsers
and translators.

The main motivation for remodelling the present NMF in EXPRESS is completeness.
New component models could be communicated with the same tools and protocols. A
potential EXPRESS-based STEP standard would not have to rely on an additional
non-EXPRESS standard.

Additional benefits can be expected for design and implementation of NMF compo-
nent model databases and management tools.

The present conclusion is that it would be worthwhile to model the present NMF in
EXPRESS. However, since the discussion of instances and systems can be carried out
separately, we have chosen to focus on this in our initial work.

5. NMF MODEL INSTANCES IN EXPRESS-G

In the following an EXPRESS-G representation of NMF component and system
model instances is presented. An instance is a specific occurrence of a model ex-
pressing the full state, in terms of its parameter values, variable values, and associated
data. Schemata 1 through 4 shows the EXPRESS-G representation of this data.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/11

Schema 1

Schema 1 shows the structure of an NMF model instance, which may appear as either
a System, with references to underlying subsystems, or as a Component with object
bags for variables, parameters, model parameters, and links, each of which is specified
more closely in the following schemata . Model parameters are named integers that are
used for dimensioning of arrays and matrices. Links are the connection ports of
Components. The ports of a System are called LinkReferences. They provide reference
chains to underlying Links. The distinction between the quantity subclasses parameters
and variables is that parameters always remain fixed at a given value throughout a
simulation, while variables, naturally, vary.

variables S [1:?]

parameters S[0:?]

model _parameters S[0:?]

links S[ 1:?]

Parameter

ModelParameter

Variable

Instance

System Component

1

subsystems S [0:?] name NameType

links S[ 0:?]

type

LinkReference

Link dimension

GeneralLink

1

connected_to A[1:?]

name

referencing

connected_to



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/12

Quantity

ContinousVariable

Name

Initial _value

Dimension

Current value

DimType

Variable

DiscreteVariable

1

1

GType
given

rows

cols

Parameter

NameType

name

INTEGERvalue

ModelParameter

ValType

ValType

Type

Schema 2

A quantity has a type (the NMF QUANTITY_TYPE referred to), a name, a dimension (if
non-scalar), and a current value. Variables also have an initial value, which holds the
state at the beginning of a simulation for dynamic (or state) variables and an initial
value guess for algebraic variables. Discrete variables is a provision for future devel-
opment of discrete time NMF models and is not currently used.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/13

Schema 3

Continuous variables also have an optional flag given which, if present, indicates that a
variable, or selected parts of a field variable, are to be kept at a given value through-
out the simulation.

Schemata 3 and 4 specify storage structures and stored elements for current and initial
values (schema 3) and for given flags (schema 4).

Array
Elements A[1:?]

Rows A[1:?]

1

ValType

column

SparseMatrix

INTEGER

SparseField

1

rows L[1:?]

SparseArray

default

elements L [1:?]

Scalar

Matrix

REAL

Value

INTEGER
row

SparseElement
Value



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/14

Schema 4

Values may be stored in either a sparse matrix storage structure or in full matrices (or
ditto arrays). Initial values are generally stored in a sparse structure where only
exceptions from the default value are listed.

Since the great majority of variables are calculated, the given flag is stored in a sparse
structure as well. The flags themselves are either a reference to a time series of values
(not specified in detail) or a GConstant symbol, indicating that the variable is to be
kept at its initial value throughout the simulation.

6. CONCLUSIONS AND FUTURE WORK

Our present work suggests that EXPRESS is suitable for modelling of many of the
data structures that are relevant for continuous simulation of modular systems. If not
incorporated into the STEP effort, a continuous simulation language standardization
project could certainly operate in a similar fashion and use many of the same methods
and tools.

Next on the agenda will be to test the functionality of the suggested data structures by
writing a parser for, initially, IDA system model descriptions.

References

Augenbroe, G, and F. Winkelmann, 1991, Integration of Simulation into the Building
Design Process, proc. of Building Simulation ´91 , Nice, France, International Build-
ing Performance Simulation Association

GType

column INTEGER

1

rows L[1:?]

SparseGElement

SparseGArray

elements L [1:?]
GTimeseries GConstant

GSingleValue

1

value

SparseGType

SparseGMatrix

row

1



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/15

Augenbroe, G. (ed), 1993, COMBINE Final Report, CEC-DG XII-JOULE

ASHRAE 1993. Invitation to Submit a Research Proposal on an ASHRAE Research
Project: 839-TRP Development of a Component Model Translator for the Neutral
Model Format, American Society for Heating, Refrigerating and Air-Conditioning
Engineers, Atlanta, GA

Buhl, W.F., E.F. Sowell, and J-M Nataf, 1989. Object-oriented Programming Equa-
tion-Based Submodels, and System Reduction in SPANK, proc. of Building Simula-
tion ´89 , Vancouver, BC, International Building Performance Simulation Association

ISO TC 184 1993. The STEP Standard, draft international standard DIS 10303,
continuously since 1992 published in several different parts

Jeandel A. 1994, Personal communication

Kolsaker, K. 1994a. NEUTRAN-supported NMF Enhancements, presented to the TC
4.7 NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Kolsaker, K. 1994b. Simpler NMF Description of Advanced Models Using Hierarchi-
cal Modelling and Data Abstraction, to be presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE annual meeting 1994

Lorenz F. 1987, Reflections about Representation Methods, proc. workshop on the
future of building energy modelling, Ispra, Italy, Nov. 1987, CEC EUR 11603 EN
PREPRINT, May 1988

Lorenz F. 1990. Brief Description of the MS1 (Modelling System 1) Project, private
communication

Lorenz F., 1994, Comments on the Neutral model Format, presented to the TC 4.7
NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Nataf J.-M. 1994, Translator from Neutral Model Format to SPARK, draft paper
presented to the TC 4.7 NMF Ad Hoc Subcommittee at the ASHRAE winter meeting
1994

Pelletret, R. 1994, Personal communication

Pelletret, R., S. Soubra 1994b. Standardizing Model Documentation - The
PROFORMA Experience, presented to the TC 4.7 NMF Ad Hoc Subcommittee at
the ASHRAE winter meeting 1994

Sahlin, P, E.F. Sowell 1989, A Neutral Format for Building Simulation Models, proc.
of Building Simulation ´89 , Vancouver, BC, International Building Performance
Simulation Association

Sahlin, P. 1991, IDA - a Modelling and Simulation Environment for Building Appli-
cations, Swedish Institute of Applied Mathematics, ITM Report no. 1991:2



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/16

Sahlin, P., A. Bring, and E. F. Sowell, 1994. The Neutral Format for Building Simu-
lation, Version 3.01, Swedish Institute of Applied Mathematics, ITM Report no.
1994:2

Sowell, E.F. 1994. A Proposal for Hierarchical Submodels in NMF, to be presented
to the TC 4.7 NMF Ad Hoc Subcommittee at the ASHRAE annual meeting 1994



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/2

coupled air flows and heat transfers in multi-zone
buildings. In addition to the coupling issues, this
development has a special interest in that it offers an
opportunity to weigh the pros and cons of general
simulation tools versus application oriented ones,
particularly with respect to: efficiency, robustness and
development man-time. In this case, the application
area is extremely well suited for tailored methods, so
the odds against the general tools are high.

IDA has been developed at the Swedish Institute of
Applied Mathematics in cooperation with the
department of Building Services Engineering at KTH.
At the heart of the system is a general solver for
differential-algebraic (DAE) systems of equations,
IDA Solver, which among other things features input-
output free, precompiled component models. A
discussion of solver design issues can be found in
(Sahlin and Bring 1991) and (Eriksson, Söderlind,
and Bring 1992) treats the numerical methods of IDA
in some more detail. IDA Modeller is an interactive
front end to the solver. IDA component models are
primarily described with the Neutral Model Format,
NMF (Sahlin, Bring, and Sowell 1992).

The present project has involved use of the entire IDA
environment. The programming tool kit of IDA
Modeller has been used to complement the general
model-lab facilities of IDA. The result is a tailored
user interface, focusing on the editing of the air flow
networks and on specialised result presentations.
These features of the current application, and the
Modeller in general, are treated in an accompanying
paper (Sahlin 1993). In this paper we will concentrate
on NMF modelling of the components and on solver
techniques.

The current application has been developed with
support from the Swedish ventilation manufacturer,
ABB Indoor Climate. Their primary interest is to use
it for clean room design. ABB had evaluated the
Movecomp program (developed by one of the present
authors in cooperation with M. Herrlin), and found
the functionality adequate but the user interface
slightly dated. The idea to modernise Movecomp was
discussed, but, since the resulting product would still
be a monolithic program with uncertain development
potential, an alternative was sought. The alternative,
to implement the Movecomp functionality in IDA and
develop a tailored tool, was accepted.

Section 2 covers the basic mathematical modelling,
which is concretised further in Section 3 with sample
NMF models. Application performance and numeri-
cal features are discussed in Sections 4 and 5. Due to
space constraints, the account is focused on the
multizone air exchange (MAE) models alone. These

models have been successfully tested in conjunction
with building thermal models, but the main difficul-
ties are all MAE model related. Hence, our focus
here.

2. FEATURES MODELLED

The implemented air-exchange models follow closely
the approximations made in the Movecomp program
(Herrlin 1992). Macroscopic models are used, assum-
ing complete mixing within each zone (node).
Obviously, for clean room design, it would be
advantageous to study flow patterns within zones,
especially in cases when doors are temporarily
opened. However, this would require coupling of CFD
models to lumped parameter models for ventilation
and infiltration components. Such a task, although
technically feasible, is outside the scope of our current
design tool effort.

Besides the basic pressure - mass balance, we model
transports of enthalpy plus one contaminant.
Generally, the temperature distribution has a weak
influence on the mass transport, whereas the con-
taminant is considered to lack such coupling. The
current set of models treats only simple molecular
transport of the contaminant. Sorption phenomena
and molecular reactions are not included. It would be
straightforward to extend the models to transports of
more than one contaminant.

Excluding heat transfer models for the building
envelope, we deal with two groups of air flow
components; we will call them nodes and connecting
elements.

The node components are characterised by their
potentials: pressure (P), temperature (T), contaminant
concentration (X). Nodes can be zones, or junctions in
the ventilation system. Their model equations
represent conservation of mass, energy, and contami-
nant:

0

0

0

=

= +

= +










∑
∑
∑

�m

q q

xf xf

i

i zone

i source

        (1)

where q
zone

 is heat from the envelope and xf
source

 is a
contaminant source term.

The connecting elements can be leaks, or any double-
ended pieces of the ductwork (ducts, grilles, fans,
etc.). Among their model equations we always find
the mass flow modelled as a function of the pressure
difference across the element,



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/3

� ( )m f P P1 2 1 2− = − . (2)

We have chosen to use power law equations for the
pressure - flow relation, rather than quadratic rela-
tions. Both choices have advantages; for us the main
factor has been compatibility with Movecomp to
simplify comparisons. For a leak, with linearization
around zero, we then have,

f p

c p Abs p p

c p n p

c p n p

( )

, ( )

( ) ,

( ) ,

∆

∆ ∆ ∆

∆ ∆

∆ ∆

=

<

>

− − <










0 0

0

0

(3)

where n is a coefficient between 0.5 and 1.0.

Heat and contaminant transport through a connecting
element are typically just convected by the mass flow,

q
c T m m

c T m m

p

p
1 2

1 1 2 1 2

2 1 2 1 2

0

0−
− −

− −

=
>

<




� , �

� , �

and (4)

xf
X m m

X m m1 2

1 1 2 1 2

2 1 2 1 2

0

0−
− −

− −

=
>

<




� , �

� , �

, (5)

where T and X are the temperatures and contamina-
tion concentrations of the connected nodes on each
side of the leak.

Heating or cooling coils will also model a local heat
balance; a filter will model a reduction in contami-
nant concentration.

One of the major advantages with the modular
approach is that replacement of individual component
models is easy as long as the interface variables
between models remain the same. This makes it
possible to replace these simple models by more
detailed ones. Thus, we could for instance introduce
heat transports between ducts and surroundings, or
detailed models of sorption phenomena. So far no
such models have been implemented.

3. NMF AND EXAMPLES

In this section we will explain some basic features of
the Neutral Model Format (NMF), and present NMF
code for two representative models.

3.1. The Neutral Model Format (NMF)

NMF is a suggested standard for model expression. It
has two main objectives: (1) models can be automati-
cally translated into several simulation environments,

i.e. the format is program neutral and machine
readable; and (2) models should be easy to understand
and express for non-experts. The first objective
enables development of common model libraries,
which can be accessed from a number of simulation
environments.

Internal component model behaviour is described by a
combination of algebraic and ordinary differential
equations. (The given examples have only algebraic
equations.) Equations may be written in any order
and in the form

<expression> = <expression>;

NMF only states equation models, while solution of
equations is, in some cases, left to the target envi-
ronment (e.g. IDA, or SPARK), or the NMF translator
in others (e.g. TRNSYS, or HVACSIM+).

NMF supports model encapsulation through a link
concept, i.e. models may only interact via variables
appearing in LINK statements. To enhance and
encourage model plug compatibility, links and
variables are globally typed.

To enable direct model translation to input-output
oriented environments (e.g. TRNSYS, or HVACSIM+),
variable declarations have a role attribute indicating IN
for given variables and OUT for calculated ones. In
addition, pure help variables, with role LOC, may be
assigned to.

A complete account of NMF is given in (Sahlin,
Bring, and Sowell 1992).

3.2. Zone Model Example



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/4

CONTINUOUS_MODEL  BdZone
ABSTRACT
 "A static zone model for air-exchange modelling. Bidirectional
transports of energy plus a mass fraction are modelled."
EQUATIONS
/* mass conservation (eqn. 1a)*/
   0 = M_0 + SUM i=1, n M[i] END_SUM;
/* energy conservation (eqn 1b) */
.  0 = Q_zone + Q_0 + SUM i2=1, n Q[i2] END_SUM;
/* fraction conservation (eqn. 1c)*/
   0 = xf_source + Xf_0 + SUM i3=1, n Xf[i3] END_SUM;
LINKS
/* type     name        variables... */
BidirX terminal_0 P, POS_IN M_0, T, POS_IN Q_0, X, POS_IN Xf_0;
FOR i = 1, n
  BidirX terminal[i]   P, POS_IN M[i], T, POS_IN Q[i], X, POS_IN Xf[i];
Tq       air_temp       T, POS_IN Q_zone;
VARIABLES
  /* type            name    role [def   min  max]  description */
  MassFlow_u  M_0     OUT          "terminal 0 mass flow"
  MassFlow_u  M[n]    IN           "terminal i mass flow"
  Pressure        P       IN            "zone floor level pressure"
  HeatFlux         Q_0    OUT        "terminal 0 heatflux"
  HeatFlux         Q[n] IN            "terminal i heat flux"
  Temp              T   IN            "zone temperature"
  FractFlow_u  Xf_0  OUT        "terminal 0 transport"
  FractFlow_u  Xf[n]   IN            "terminal i transport"
  Fraction_y      X       IN            "zone fraction"
  HeatFlux        Q_zone IN             "heat gain/loss in zone"
MODEL_PARAMETERS
/* type    name     min  max           description */
  INT           n           1   BIGINT     "Number of links minus one"
PARAMETERS
/*type         name  [def  min  max]   description */
Length           za                           "zone floor height relative to ground"
Length           h   2.4  SMALL  BIG         "zone height"
Area              a    10  SMALL  BIG         "zone floor area"
FractFlow_u xf_source                "Mass fraction source (or sink)"
END_MODEL

NMF code for the air-exchange zone model

The link type for bidirectional flow between models
BidirX has six variables: pressure and mass flow,
temperature and heat flow, contaminant concentra-
tion and contaminant flow. It might seem that either
temperature or heat flow could be eliminated, and
corresponding for the contaminant pair of variables.
It turns out, however, that modelling of bidirectional
flow in a modular framework precludes that simplifi-
cation. A discussion of this topic is outside the scope
of this presentation, but it centers around the need to
have a fixed number of equations for any component,
independent of flow directions (contemplate the
change when a T-piece swaps from converging to
diverging state).

Besides the BidirX links, which handle air-exchange
interaction with neighbouring models, the zone model
has a Tq (temperature, heat flux) interface. This
interface is the bridge between the air-exchange
family of models and the thermal models for the
building envelope. Due to space constraints we will
refrain from a presentation of these models here.

A special case of scaling is used for time related
variables, i.e. flows and time derivatives. These occur
related to different time units, chosen to fit the
current simulation focus. E.g. thermal building
models are typically used with hour as time unit but

may also be combined with flow models and control
models in order to study faster phenomena at seconds
scale. To avoid trivial model duplications, the scaling
differences can be expressed in the models by using a
time unit specified by a parameter t_scale. This scale
gives the length in seconds of the time unit, t_scale =

3600 for hours, etc.

The zone and leak models have the BidirX interface
which allows bi-directional flow. However, in the
interest of calculation time we have chosen to model
only uni-directional flow in ventilation components.
This means that ventilation models need only four
link variables, rather than six for the BidirX links and,
generally, only one equation (eqn. 2), instead of three.
The four-variable link type is called VentX.

3.3. Zone Supply Terminal Model

The supply terminal model, VxSupT, acts as interface
between the VentX and BidirX models. Consequently, it
has one link of each kind. This model still needs three
equations - although only uni-directional flow is
allowed - since there is a BidirX interface present.

CONTINUOUS_MODEL VxSupT
ABSTRACT  "Supply Terminal. Linear flow below limit 'dp0', and if LIN."
EQUATIONS
/*two help assignments, for local density and pressure drop */
   Rho := rho_20 * (20. - ABS_ZERO) / (T2 - ABS_ZERO) ;
   Dp := P1 - P2 + zr2 * G * Rho ;
/* power law mass flow equation,  eqn. (2) in paper */
/* LINEARIZE function explained in Section 5.1 of paper */
   0 = -M / t_scale +
              IF LINEARIZE (1) THEN c_turb * Dp
              ELSE_IF Dp < dp0 THEN c_lin * Dp
              ELSE c_turb * sqrt (Dp)
              END_IF ;
/* convected heat through terminal, eqn. (4) in paper */
  Q = IF LINEARIZE (1) THEN T1
         ELSE cp * T1 * M / t_scale
         END_IF ;
/* fraction transported through terminal, eqn. (5) in paper */
  Xf = IF LINEARIZE (1) THEN X1
        ELSE X1 * M
        END_IF ;
LINKS
  /* type      name        variables... */
  VentX  inlet    P1, POS_IN M, T1, X1 ;
  BidirX  zone   P2, POS_OUT M, T2, POS_OUT Q, X2, POS_OUT Xf;
VARIABLES
/* type         name   role  [def   min  max]       description */
  MassFlow_u  M     OUT   0.   -BIG   BIG       "mass flow "
  Pressure      P1    IN      2.   SMALL  BIG   "pressure in"
  Pressure      P2    IN      1.   SMALL  BIG   "pressure out"
  temp            T1     IN      15. ABS_ZERO BIG "temperature in"
  temp            T2     IN      15. ABS_ZERO BIG "temperature zone"
  HeatFlux      Q      OUT   0.  -BIG   BIG  "heat convected by massflow"
  fraction_y     X1     IN     .1    0.        BIG   "pollutant fraction in"
  fraction_y     X2     IN     .1    0.        BIG   "pollutant fraction zone"
  FractFlow_u Xf      OUT   0.  -BIG   BIG   "pollution transport"
  Pressure      Dp    LOC                   "eff pressure diff"
  density         Rho  LOC                   "air density"
PARAMETERS
  /* type        name  [def    min   max]  description */
/* easy access parameters */
/* priority order: c_t, xi */
  generic       c_t       0.   0           BIG   "power law coefficient"
  length         d         .25  SMALL  BIG   "inner diameter"
  generic       xi        10.   0          BIG    "loss coefficient"
  length         zr2       0.   0           BIG   "leak height from floor"
/* globally given */
  HeatCapM   cp    1006   500  3000      "air cp"
  Pressure     dp0    .1     SMALL  BIG    "limit for linear flow"
  Density      rho_20 1.2  SMALL  BIG     "reference density"



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/5

  Factor        t_scale 1.   SMALL  BIG     "size of time unit [s]"
/* derived parameters */
  area            a                                  "cross section area"
  generic        c_lin                             "laminar coefficient"
  generic        c_turb                            "flow characteristic"
PARAMETER_PROCESSING
/*par processing is executed once, prior to simulation */
  a := PI * d * d / 4. ;
/* Check alternative definitions of C_turb */
  c_turb := IF c_t != 0. THEN
                   c_t
                ELSE_IF xi == 0. THEN
                   0.
                ELSE
                   a * (2. * rho_20 / xi)**0.5
                END_IF ;
  IF c_turb == 0 THEN
  CALL nmf_error ("wrong parameters (c_t or xi) for supply terminal");
  END_IF ;
  c_lin := c_turb / sqrt (dp0) ;
END_MODEL

The use of the LINEARIZE function enhances model
robustness. This issue is treated at some depth in
Section 5.1.

4. PROBLEM SIZE

A crucial issue in our case of general versus special-
ised programs is obviously the question of overall
efficiency.

In tailored programs for multi-zone air exchange, it is
natural to reduce the central pressure - mass flow
equation system (eqns 1 and 2) to contain just the
flow balances in the nodes. The equations for the
connecting elements relating pressure and flow (eqn.
2) are used to calculate the Jacobian matrix of the
system with regard to the node pressures. The
resulting linear system is positive definite and can
therefore be solved without pivoting. Newton
iteration, often damped, is used to solve the nonlinear
system. The weak coupling from temperature to
pressure, due to stack effect, can be handled in the
same iteration loop without untoward effect on the
convergence properties. The contaminant distribu-
tion, which normally has no feedback on pressure,
can be calculated separately once the mass flows are
known.

In a general simulation environment, such as IDA,
the above type of simplification is not readily
available. One of the aims of the current study has
also been to demonstrate the applicability of a general
tool on this type of problem. Thus, no effort has been
made to utilise the special structure of the problem.
The general sparsity techniques implemented in IDA
are of course used. These are, on the other hand, most
effective for problems with large components (many
equations) but relatively few connections between
components, and are thus not particularly well suited
for the current model family.

In IDA, the equation system that is simultaneously
solved will contain, both the conservation equations

from the nodes, the pressure - flow relations from the
connecting elements, and all transport equations. The
system matrix will thus often be more than an order
of magnitude greater than in the tailored program,
especially when a ventilation system with many
components is included.

At first sight this growth in system size seems, of
course, fatal. However, for an overall appraisal of the
approach, one should weigh the time spent on
modelling, i.e. connecting models and giving parame-
ters, against the raw simulation (solution) time. When
IDA Modeller is used to set up a simulation problem,
a reasonably sized problem may take about an hour to
assemble, provided all parameters are known in
advance. Let's say a problem with a three story
building, five zones on each floor, and a balanced
mechanical ventilation system. The time spent on
actual number crunching on such a problem, with the
general approach, is about half a minute on a 486
system. Obviously, the calculation time of a tailored
program is only a few seconds, but this is, in our
view, of little practical consequence, since the total
turnaround time will be virtually the same. If a large
number of simulations have to be done with the same
model - for, say, automatic optimisation - the per-
formance difference naturally becomes more impor-
tant.

5. NUMERICAL APPROACH

In the previous section we have discussed the
efficiency of the general tools in comparison with
specialised. Naturally, the other crucial performance
factor is robustness. If a general approach is signifi-
cantly less reliable, it will clearly not be useful as a
base for end user tools. Again, the multizone air-
exchange set of models is extremely demanding.

Looking again at the tailored programs, we find that
the restricted problem type can be exploited to
enhance efficiency. Movecomp, e.g., uses a two step
strategy: First, the flow equations are linearised. The
exponents in the power law equations are set to one,
and this linear system is solved. Secondly, starting
from the linear solution, a modified newton method is
used; in each step a Jacobian is calculated and a line
search is made in the direction defined by a newton
step. A formal proof has been found for the universal
convergence of this method (Lindberg 1985) for the
case of power law leak models. This is, indeed, quite
remarkable since few such proofs exist for severely
nonlinear systems.

For general DAE simulation, a separate initial value
calculation is required to find start values satisfying
the algebraic equations. For nonlinear systems, this
task is a crucial problem, and will remain to be so,



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/6

since no general solution is possible. Independent of
problem type, the task can be solved if the user
supplies good enough first guesses. Obviously, this
can be very difficult for complicated models. Several
general methods are available in IDA to deal with
this problem:

•
explicit linearization of NMF models to get a user
independent starting point for nonlinear equation
solving;

• two Newton homotopy techniques plus a line search
in the Newton direction;

• a gradient solution method has been implemented
and is under testing for cases when user guesses result
in a singular Jacobian matrix.

The present version of the air-exchange library of
models is completely static (algebraic), i.e. the initial
value problem is the whole problem. However, for
coupled models, e.g. when thermal models are
included, we have a true DAE problem, but the initial
value difficulties of this problem come from the air-
exchange models alone. Hence, it is sufficient to look
at them alone for experimentation with initial value
techniques.

Two of the initial value tools of IDA have been
developed in conjunction with the present project:
explicit linearization and line search techniques.

5.1. Linearised NMF Models

Linearization of nonlinear models can be a useful
means to support initial value calculation, quite
independent of application field. We have thus chosen
to make the linearization an explicit feature of the
NMF models. This has been a planned extension of
the NMF syntax for some time, but the present
models are the first, where such a feature is indispen-
sable. NMF-translators for various simulation
environments may implement different interpreta-
tions, the simplest being to ignore the construction by
implementing a dummy LINEARIZE function. This type
of extension is however of general interest and we
report the experience of our experiments so far.

The IDA solver is prepared to pass through a
sequence of one or more preparatory stages at the
beginning of each initial value calculation. Typically,
there is only one extra stage, during which some
components may choose to linearise their models.
The stage information is requested by the component
via a call of a Boolean system function

LINEARIZE (n),

where n is an integer constant. The function defini-
tion is:

LINEARIZE is true if the stage number of the solver is
less than or equal to n.

The solver will let the stage number vary 1, 2, ... until
no call of LINEARIZE gets an answer true. At that stage,
all linearizations have been removed, and, if the
solving has converged so far, one set of initial values
has been found.

In the current application, all power law equations
governing mass flow have been equipped with a
linearised alternative, e.g. the leak mass balance (eqn.
2 and 3) is:

/*Leak with bidirectional flow */

/* power law mass flow equation */
  M / t_scale =
           IF LINEARIZE(1) THEN c * Dp
           ELSE_IF abs (Dp) < dp0 THEN c0 * Dp
           ELSE_IF Dp > 0 THEN c * Dp**n
           ELSE -c * (-Dp)**n
           END_IF ;

The equations governing heat flow and contaminant
flow, being without major influence on the mass
transport, can be manhandled even more. In a
converging T-piece we might define the heat balance
through:

/*Converging T-piece*/

/* energy balance equation */
0 = IF LINEARIZE (1) THEN
                                 - T3 + T1 + T2
                            ELSE
                                 - M3 * T3 + M1 * T1 + M2 * T2
                            END_IF ;

It is conceivable that a two stage relaxation of
linearizations might be useful for this type of compo-
nents. It could for instance help to keep temperature
and contaminant equations linearised while the
nonlinear mass flow equations are introduced. So far,
this has not been called for in the current application.

For the air-exchange models the linearization tech-
nique relieves the user completely of guessing initial
values. This is, in our view, an essential factor in the
case of general vs. special.

5.2. Line Search Technique

Ordinary Newton-Raphson iteration is not a reliable
tool for initial value calculation in nonlinear appli-
cations. Damped Newton-Raphson, is a better
alternative, especially if the dampening factor is
dynamically selected, e.g. by a line search. One such
method has been implemented in conjunction with
the current application.



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/7

A search is made in the direction defined by a newton
step. The location of a minimum for a residual
function is estimated, using quadratic interpolation
between three suitable points. The minimised
function is a weighted Euclidean norm of the residu-
als in the model equations:

m i n w r x dx
i

i i
λ

λ∑ ∗ + ∗( ( ) )0
2  , (6)

where r is the residual vector and dx defines the
newton direction. w is a weight vector introduced to
compensate for variations in scaling between the
equations 0 = F(x):

wi m a
k

x
Fi
xk

=










1/

∂

∂
(7)

The mentioned explicit linearization and line search
techniques have resulted in sufficient convergence
properties for all practical purposes. Occasionally, for
cases without any driving forces, the linearized
solution leads to a singular Jacobian. However, these
problems are likely to be solved with the recently
implemented gradient methods.

5.3. Utilising Sparsity

A general problem formulation often leads to sparsely
populated equation systems. The MAE models are, as
we have seen, no exception in this respect.
Consequently, a lot of the work on solvers for general
simulation environments deals with various methods
to utilise this sparsity with little or no loss of general-
ity. IDA Solver provides several methods for various
problem types, but many more could be developed.
The numerical methods of IDA are presented at some
depth in (Eriksson et al 1992). Here we will be con-
tent with a very superficial discussion.

The most sophisticated IDA methods, the modular
methods, starts with a very large system of equations,
which not only includes all component equations but
also equations for every connected pair of variables,
e.g.,

zone m leak m7 1
5 1 2

. .= − − . (6)

This class of methods is best suited for models with
few component interface variables in comparison to
internal variables. Another IDA method, the compact
method, starts with eliminating the connection
equations and then proceeds with solving the system
without further utilisation of sparsity.

On the mentioned three-story test case, the best
modular method outperforms the compact method

slightly, in spite of the large number of interface
variables.

The most obvious improvement would therefore be to
implement some staple sparse techniques within the
compact method, e.g. band and skyline sorting and
solution. However, we believe a lot more can be done,
and that, in fact, the MAE models represent a quite
important problem category, i.e. a central mass flow -
pressure system (eqns. 1 and 2) and several loosely
coupled transport equations (eqns. 4 and 5).
Topologically, all processes are spread across the
network. Transports in the present models are only a
single contaminant fraction and thermal energy, but
they could be many more. Hitherto, we have not had
the means to work on sparse methods for this class of
problems but it seems evident that much could be
done.

6. CONCLUSION

An application tool for inter-zone air exchange has
been developed, using NMF and the general simula-
tion tool IDA. NMF has proven a very effective
means to describe component models, for human
readers as well as for automatic translation into a
simulation environment. IDA has been used to
generate a tailored user interface for the application,
making system building and manipulation simple
tasks. The IDA Solver has proved to be an adequate
tool for solving the nonlinear algebraic systems
generated by the current application.

The application tool is presently under evaluation in
an industrial design setting at ABB Indoor Climate.

A comparison with an existing simulation program,
developed explicitly for inter-zonal air flow studies
only (Movecomp), shows that the general approach is
competitive:

• The tailored program is faster, but calculation times
with the general program are quite acceptable also for
fairly large systems, in spite of the facts that the
problem type is extremely well suited for specialised
solution methods and that the speed-up potential of
the general tools is far from exhausted.

• The robustness of the general method is sufficient
for practical purposes.

• Development time in the general environment is
several times shorter than the specialised ditto.

• Model coupling with ,e.g., thermal models is
straightforward in the general case while hardly
practical in the specialised.



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/8

• The general models have significantly better
maintenance and development potential. Adding a
new model to the library only involves formulating
the NMF model; the implementation time is negligi-
ble.

In summary, considering the continuous improvement
of computer hardware, the weakness of the general
system in calculation time is far outweighed by other
factors. The same argumentation should be valid for
most other building simulation applications, since the
MAE models are rather demanding.

REFERENCES

Bring, A; Herrlin, M.  1991. Bris Data AB, Calscand
International. User's Manual, MOVECOMP-PC, An Air
Infiltration and Ventilation System Program.

Eriksson, L; Söderlind, G; Bring, A. 1992. "Numerical
Methods for the Simulation of Modular Dynamical
Systems." Bulletin 21. Dept. of Building Services
Engineering, Royal Institute of Technology, Stockholm.

Feustel, H. E; Rayner-Hooson, A. 1990. COMIS
Fundamentals. Lawrence Berkeley Laboratory, CA, USA.

Hensen, J.L.M; Clarke, J.A. 1991. "A Simulation
Approach to the Evaluation of Coupled Heat and Mass
Transfer in Buildings." In Proceedings of the IBPSA
Building Simulation '91 (Nice, Aug.).

Herrlin, M.  1992. "Air-Flow Studies in Multizone
Buildings." Bulletin 23. Dept. of Building Services
Engineering, Royal Institute of Technology, Stockholm.

Lindberg, B. 1985. "An Algorithm for Simulation of the
Pressure Distribution in a Building." Research Report
TRITA-NA-8503. Dept. of Numerical Analysis and
Computing Science, Royal Institute of Technology,
Stockholm.

Sahlin, P; Bring, A. 1991. "IDA Solver - a Tool for
Building and Energy Systems Simulation." In Proceedings
of the IBPSA Building Simulation '91 (Nice, Aug.).

Sahlin, P; Bring, A; Sowell, E. 1992. "The Neutral Model
Format for Building Simulation." Bulletin 24. Dept. of
Building Services Engineering, Royal Institute of
Technology, Stockholm, Sweden.

Sahlin, P. 1993. "IDA Modeller - a Man-Model Interface
for Building Simulation." To appear in Proceedings of the
IBPSA Building Simulation '93 (Adelaide, Aug.).

Walton, G. N. 1989. AIRNET - a Computer Program for
Building Airflow Network Modelling. U.S. Department of
Commerce, National Institute of Standard and Technology,
Gaithersburg, MD, USA



Paper 5 , presented at the IBPSA Building Simulation ‘93 conference, Adelaide, Australia, August,
1993

5/9



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/1

NMF-BASED ASPECT MODELS IN STEP/EXPRESS FOR
BUILDING AND PROCESS PLANT SIMULATION

Per Sahlin
Building Services Engineering
Royal Institute of Technology
100 44 STOCKHOLM, SWEDEN
e-mail:  plurre@kth.se

Curt Johansson
Construction Management
Royal Institute of Technology
100 44 STOCKHOLM, SWEDEN
e-mail:  curt@ce.kth.se

Abstract

Automated design performance assessment through simulation will be an important
aspect of future product model technology. The research in this area has so far been
focused on traditional simulation tools. However, the rapid development of new
structurally different tools calls for a shift of attention. New object-oriented methods
of describing simulation models can and should be integrated with the product model
itself. In this paper we will briefly review a current development trend in continuous
simulation and present a new language for model description, Neutral Model Format
(NMF), which in recent years has gained considerable attention in the field of
building simulation. The possibility of joining the continued NMF development with
the STEP domain is discussed and some examples of NMF based EXPRESS models
are presented.

1. INTRODUCTION

One driving factor behind product model research is that it will give designers direct
access to easy and repeated design evaluation. Obviously, cost estimates, bills of
materials, and various drawings should be easily generated from product model data,
but of equal importance are measures of the dynamical performance of the design at
hand. In the AEC field the EEC COMBINE project (phase 1) has demonstrated
feasibility of data mapping from an EXPRESS-based data model of a building to a
range of established building performance evaluation (BPE) tools [Augenbroe 1993].
Phase 2 of this project seeks to put this technology to use among practitioners in the
field. Another industrial sector with considerable activity in both product modelling
and simulation is the process industry.

The authors of this paper have for some time worked with new simulation techniques
and languages for continuous modular systems. These techniques are applicable to a



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/2

large class of static and dynamical simulation problems in, e.g., the building, energy
and process industries. One important aspect of this work has been involvement in the
definition of a standard format, Neutral Model Format (NMF), for expression of
component level simulation models. The purpose of this paper is to investigate the
applicability of STEP technology in the continuation of this work.

Currently, component models (primitive models) are automatically translated from
NMF to the proprietary format of the target simulation environment. For example, an
NMF model of an axial fan is used to generate an axial fan class in, e.g. IDA [Sahlin
1991]. The class is then instantiated in the target environment. The instances are
furnished with suitable parameters, and incorporated into a system model. The next
natural step in the NMF development is to formulate an environment independent way
of expressing and communicating instantiated system models as well. Several authors
have already suggested and even implemented such NMF extensions [Kolsaker 1994a,
Lorenz 1994]. Since object oriented simulation is a highly relevant topic for product
modelling efforts [Augenbroe 1991], we will analyze the implications of using
EXPRESS for data modelling of NMF instantiated system models.

In the next two sections a brief overview is given of current work on so called object
oriented simulation methods, mainly in the context of building simulation, and of the
Neutral Model Format.

2. OBJECT ORIENTED SIMULATION ENVIRONMENTS

The term object oriented is perhaps not the best descriptor for these tools but it has
nevertheless become widely used and we will use it here as well. The object orienta-
tion concerns mainly the modularity of the physical systems that are being modelled
and not so much software techniques. Naturally, most recent developments also use
object oriented programming to varying degrees.

2.1 PHYSICAL SYSTEMS AND MATHEMATICAL MODELS

Physical systems that we aim to simulate are modular in nature, i.e. they naturally
decompose into subsystems. Frequently, identical subsystems are repeated a number
of times in a model, a fact that is taken advantage of in many tools. Furthermore, the
systems should have a basically continuous behavior, meaning that equations used to
describe them, as well as forcing functions, will have a limited number of discontinui-
ties. Purely event driven systems are excluded.

Models may be expressed in several ways. Bond graphs, linear graphs, block dia-
grams, electrical analogies, and mathematical equations are frequently used modes of
expression. Also used, for mainly historical reasons, are subroutines in some pro-
gramming language. A discussion of pros and cons of various methods of description
can be found in [Lorenz 1987].

If characterized by equations, the physical systems under consideration will require
both algebraic and differential equations. Differential equations can be either ordinary
(ODE) or partial (PDE), although current tools require that PDEs are explicitly
discretized in space and thus turned into ODEs. Note that in contrast to many widely
used commercial tools the simulation environments we are concerned with here are



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/3

not limited to ODEs only. They allow a free mixture of algebraic and ordinary differ-
ential equations generally referred to as differential-algebraic systems of equations
(DAE).

Furthermore, the simulation tools under discussion are rarely used for applications
where a strict formalism for generating governing equations exists. In, e.g., electrical
circuit analysis, multibody mechanics, or structural analysis special purpose systems
may be more advantageous.

Examples of physical systems that fit this description can be found in many fields.
Chemical process plant simulation is a significant area of application. Energy distribu-
tion networks and plants is another. The authors of this paper have mainly worked
with building related systems and important applications within this field are: thermal
processes in walls and spaces; air and water based distribution systems and plants; and
automatic control.

2.2 SEPARATION OF MODELLING AND SOLVING ACTIVITIES

In contrast to many established design tools, e.g. in building simulation, OOSEs
separate strictly between the modelling and subsequent system solution activities. A
modelling tool is often used for model formulation. This tool generates a system
model, generally expressed in a modelling language. The model is then treated by a
solver. An important benefit of a separate solver is that it may be altered or even
exchanged with minimal interference with the modelling environment.

Key characteristics of the modelling language, such as expressiveness and level of
standardization, are critical to the usefulness and development potential of the overall
OOSE. The Neutral Model Format is part of such a modelling language. This paper
describes one way towards a complete modelling language that may be standardized.

2.3 TARGET USERS AND SOFTWARE STRUCTURE

Most of the simulation tools under discussion are intended for quite sophisticated
users, who are well versed in mathematical modelling, numerical methods and ad-
vanced use of computers. These tools are not directly suited for designers, without
special simulation expertise, that use simulation as one of several methods for design
evaluation. However, for the expert, they generally provide an efficient graphical
environment for model building, simulation and analysis.

Other tools, e.g. EKS and IDA, are primarily intended for efficient design tool
production, and the normal end user will rarely interact directly with the underlying
OOSE techniques.

2.4 AVAILABLE AND EMERGING OOSEs

A few tools and environments with the discussed main characteristics are already
matured and available and others are under development. Among the available ones
are e.g.:

TRNSYS was developed during the seventies at the Solar Energy Lab at the Univer-
sity of Wisconsin. It was one of the first modular simulation solvers for DAEs and it is



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/4

distributed as a Public Domain product. Several compatible modelling tools have been
developed, e.g. PRESIM.

HVACSIM+  is a solver with similar characteristics as TRNSYS in terms of model
format and structure, but more recent numerical techniques are utilized. It was
developed by NIST in Maryland and released in the mid eighties on a Public Domain
basis.

SANDYS is a general DAE solver and textual modelling environment developed by
ASEA, Sweden, in the early eighties. It is commercially available from ABB Corpo-
rate Research.

ALLAN-NEPTUNIX  is a graphical modeller and solver combination developed by
Gaz de France and CISI Engineering. It is since a few years commercially available
from the developers.

ESACAP is a recently developed DAE solver by the European Space Agency. It is
commercially available from STANSIM, Denmark.

DYMOLA  is a text based commercial modelling tool with symbolic algebra capabili-
ties and interfaces to several solvers. A GUI is under development. Available from
DYNASIM, Lund, Sweden.

Some tools under development are:

CLIM 2000, a graphical modelling tool for building applications, is developed by
Electricite de France.

MS1 is a graphical multi input language modeller with interfaces to several solvers by
Lorenz Consulting, Liege, Belgium in cooperation with Electricite de France.

IDA , a graphical modelling environment and solver, is under development at the
Swedish Institute of Applied Mathematics.

SPARK is a solver and graphical model editor under development at LBL, Berkeley,
California.

OMSIM is a graphical modelling tool under development at the Dept. of Automatic
Control at the Lund Institute of Technology, Sweden.

EKS is a C++ toolkit for development of energy related simulation design tools, by
among others the Univ. of Strathclyde, Scotland.

3. THE NEUTRAL MODEL FORMAT

Without a comprehensive, validated library of ready made component models in a
relevant application area most simulation environments are rather useless. To develop
all necessary models from scratch is, in most projects, quite unrealistic. And since the
cost of developing a substantial library easily exceeds the development cost of the
simulation tool itself, it is important to be able to reuse what other people already
have done. This was the basic motivation for proposing a text based neutral model



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/5

format to the building simulation community in 1989 [Sahlin and Sowell 1989]. Since
then the proposal has attracted a great deal of interest from environment developers
and users in several application fields. Prototype translators have been developed for
IDA [Kolsaker 1994a], SPARK [Nataf 1994] and ESACAP [Pelletret 1994a].
Translator development projects have been funded for TRNSYS, HVACSIM+
[ASHRAE 1994], and MS1 [Lorenz 1994]. Export and import capabilities are
planned and partly implemented for ALLAN-NEPTUNIX [Jeandel 1994].

Pending formal standardization, ASHRAE (American Society of Heating, Refrigerat-
ing, and Air-conditioning Engineers) has formed an ad hoc committee that approves
changes to the present format.

NMF has two main objectives: (1) models can be automatically translated into the
local representation of several simulation environments, i.e. the format is program
neutral and machine readable; and (2) models should be easy to understand and
express for non-experts. The first objective enables development of common model
libraries, which can be accessed from a number of simulation environments.

3.1 BASIC NMF FEATURES

Internal component model behavior is described by a combination of algebraic and
ordinary differential equations. Equations may be written in any order and in the form

<expression> = <expression>;

NMF only states equation models, while solution of equations is, in some cases, left
to the target environment (e.g. IDA, or SPARK), or the NMF translator in others (e.g.
TRNSYS, or HVACSIM+).

NMF supports model encapsulation through a link concept, i.e. models may only
interact via variables appearing in LINK statements. To enhance and encourage model
plug compatibility, links and variables are globally typed. The idea is that basic list of
such types should be included in each revision of the standard, but that users may add
to the list as need arise. A selection of such global types is:



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/6

A quantity type includes a physical unit and information about potential (across) or
flow (through) type. A link type is simply an ordered list of quantity types. Let us now
look at an example of a rather simple NMF model using the heat equation in one
dimension.

Ta

Qa

Tb

Qb

Figure 1. A finite difference model of a wall with one homogeneous layer. Tempe-
rature and heatflux on each terminal.

QUANTITY_TYPES

/* type name      unit              kind */

   Area           "m2"              CROSS
   Control        "dimless"         CROSS
   Density        "kg/m3"           CROSS
   Factor         "dimless"         CROSS
   HeatCap        "J/(K)"           CROSS
   HeatCapA       "J/(K m2)"        CROSS
   HeatCapM       "J/(kg K)"        CROSS
   HeatCond       "W/(K)"           THRU
   HeatFlux       "W"               THRU
   HeatFlux_k     "kW"              THRU
   Temp           "Deg-C"           CROSS

LINK_TYPES

/* type name       variable types... */

/* generic        (arbitrary, arbitrary,...) implicitly
defined */
   F              (Force)
   FL             (Force,Length)
   Q              (HeatFlux)
   T              (Temp)
   PMT            (Pressure, MassFlow, Temp)
   PMTQ           (Pressure, MassFlow, Temp, HeatFlux)

   MoistAir       (Pressure, MassFlow, Temp, HumRatio)
   BidirFlow      (Pressure, MassFlow, Enthalpy, HeatFlux)



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/7

CONTINUOUS_MODEL tq_hom_wall

ABSTRACT
“A 1D finite difference wall model. One homogeneous layer.
TQ interfaces on both sides.”

EQUATIONS
/* space discretized heat equation */
c_coeff * T’[1] = Taa - 2.*T[1] + T[2] ;
c_coeff * T’[n] = T[n - 1] - 2. * T[n] + Tbb ;

FOR i = 2, (n -1)
c_coeff * T’[i] = T[i - 1] - 2. * T[i] + T[i + 1];
END_FOR ;
/* boundary equations */
0 = -Ta + .5 * (Taa + T[1]) ;
0 = -Tb + .5 * (T[n] + Tbb) ;
0 = -Qa + d_coeff * (Taa - T[1]) ;
0 = -Qb + d_coeff * (Tbb - T[n]) ;

LINKS
/*  type           name      variables ....  */
    TQ             a_side    Ta, POS_IN Qa ;
    TQ             b_side    Tb, POS_IN Qb ;

VARIABLES
/* type    name        role def     min    max      description*/
  Temp     T[n]        OUT   20. abs_zero  BIG  “temperature profile”
  Temp     Ta          OUT   20. abs_zero  BIG  “a-side surface temp”
  Temp     Tb          OUT   20. abs_zero  BIG  “b-side surface temp”
  Temp     Taa         OUT   20. abs_zero  BIG  “a-side virtual temp”
  Temp     Tbb         OUT   20. abs_zero  BIG  “b-side virtual temp”
  HeatFlux Qa          IN     0.    -BIG   BIG  “a-side entering heat”
  HeatFlux Qb          IN     0.    -BIG   BIG  “b-side entering heat”

MODEL_PARAMETERS
/* type    name       role  def mi  max        description  */
  INT      n          SMP    3   3  BIGINT “number of temp layers”

PARAMETERS
/*   type    name       role   [def   [min   max]]   description*/

/* supplied parameters */
  Area      a            S_P    10.  SMALL BIG  “wall area”
  Length    thick        S_P   .2    SMALL BIG  “wall total thickness”
  HeatCondL lambda       S_P   0.5   SMALL BIG  “heat transfer coeff”
  Density   rho          S_P   2000  SMALL BIG  “wall density”
  HeatCapM  cp           S_P   900.  SMALL BIG  “wall heat capacity”

/* computed parameters */
  generic   d_coeff      C_P              “lambda*a/dx”
  Length    dx           C_P              “layer thickness”
  generic   c_coeff      C_P              “rho*cp*dx*dx/(lambda*3600.)”

PARAMETER_PROCESSING
dx := thick / n ;
c_coeff := rho * cp * dx * dx / (lambda * 3600.) ;
d_coeff := lambda * a * dx ;

END_MODEL

To enable direct model translation to input-output oriented environments (e.g.
TRNSYS, or HVACSIM+), variable declarations have a role attribute indicating IN for
given variables and OUT for calculated ones.

Variables and parameters may be vectors or matrices. A parameter is anything that
must remain constant throughout every simulation. Links may also be vectors, thus
allowing models with variable number of ports. Vector and matrix dimensions are
governed by a special type of parameter, model parameters. Regular and model



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/8

parameters are divided into two categories, user supplied and computed, algorithmic
computation of which is described in the parameter processing section.

Arbitrary foreign functions in Fortran 77 or C may be defined, either globally or
locally within a model.

Special functions are defined to handle discontinuities, hysteresis, linearization, and
errors. A more complete account of NMF is given in the reference report [Sahlin,
Bring, and Sowell 1994].

3.2 NMF DEVELOPMENT DIRECTIONS

Currently, a reasonable agreement about the NMF grammar has been reached.
Developers can count on stability of the present format and backward compatibility.
This enables us to get on with the work of defining NMF-based component model
libraries and to develop further NMF translators. Several substantial model libraries
have already been developed and many more are underway.

Regarding the format itself, several extensions have been suggested. In the discussion
of these it is important to bear in mind that, at the time of the original proposal, NMF
was not primarily intended as a replacement of existing proprietary model languages,
but as a complement, enabling component model exchange and library building.

Planned extensions and supporting tools that fall within the scope of the original NMF
intentions are:

1. An NMF handbook with style guidelines for model architecture. The current NMF
manual is completely insufficient as a pedagogical tool. (Encompassed by funded
project [ASHRAE 1994].)

2. Model documentation guidelines and templates, storage and retrieval mechanisms.
This area is addressed by Pelletret in a recent (draft) proposal [Pelletret 1994]. The
ESPRIT OLMECO project - development of a large mechatronics library - is another
source of inspiration.

3. Investigation regarding adaptable models, through property inheritance and/or
through hierarchical modelling. Property inheritance between models may result in
better model reuse but it will on the other hand also have negative effects on model
portability, since inheritance trees must be passed when shipping a model. This leads
to reconciliation problems if a similar, but not identical, tree exists on the receiving
side.

4. Model library structure and management tools, including mechanisms for model
browsing and retrieval.

5. Discrete time (sampling) models. This is necessary to study sampling control
circuits.

There are several additional items that belong in this list - such as formal rules for
permitted model connections and a language or keyword system for expression of
model assumptions - that are omitted here due to space.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/9

In the context of a complete modelling language the present format lacks the ability to
express:

1. Component model instances, with parameter values, initial values of all variables,
and information about boundary variables..

2. Hierarchical systems of such instances.

3. Numerical simulation parameters, such as tolerances, stepsize limits, algorithm
selection commands, that can be generalized for a large class of solvers.

4. Graphical schemata for user presentation of simulation models. Large models are
much easier to comprehend if they are described graphically.

The drive for development of a complete NMF-based modelling language comes
primarily from developers of new modelling tools, who see little reason to develop
proprietary formats. Two such developers have made concrete proposals and imple-
mentations are well underway [Lorenz 1990], [Kolsaker 1994].

4. WHY STEP/EXPRESS?

STEP (STandard for the Exchange of Product model data) is an international standard
for product descriptions [ISO TC 184 1993]. The data for these descriptions are
modelled in a special language called EXPRESS, which is in itself part of the STEP
standard. EXPRESS is an object oriented language that is particularly well suited for
information modelling. A subset of EXPRESS is EXPRESS-G, a fully graphical
language for data modelling. EXPRESS-G schemata can automatically be translated
into textual EXPRESS code, which in turn can be translated into, e.g., C++ class
definitions. A number of tools and related standards are (and will be) available for
STEP/EXPRESS. A (default) textual representation of any EXPRESS schema is for
example implicitly defined (STEP physical file).

Since the first proposal in 1989 the discussion about various NMF-constructs has
focused on the grammar. The textual appearance of selected models has been the main
object. This is of course quite appropriate for the equation core of component models,
but for instantiated system models and related data it may be more fruitful to regard
data models directly, and to treat textual representation as one of several possible
views. EXPRESS seems to be an appropriate vehicle for the future NMF discussion.
Further reasons for the employment of STEP technology include:

• Simulation models will most likely be an important aspect of many product model
applications, and they should therefore be encompassed by STEP, either as pure
aspect models or as parts of global models

• Many existing STEP/EXPRESS resources will be useful for development of NMF-
oriented application tools

• The fact that STEP physical files most likely will be more difficult to read (for
humans) than a tailored high level language is of little consequence for realistic-size
simulation models, which generally are of such magnitude that they rarely are



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/10

printed and studied in their raw form

4.1 PRESENT NMF IN STEP

In this our initial work we have chosen to focus directly on the imminent problem of
defining conceptual models of NMF instances, and of hierarchical systems of such
instances. This means that nothing is said about the internal behavior, e.g. equations,
of a model. Only its state is encompassed, and it is assumed that the underlying NMF
model is known to all parties.

Another interesting issue is of course the conceptual models of internal behavior as
well, i.e. to model the present NMF in EXPRESS, with entities such as equation,
if_then_else_clause, etc. Such models are necessary for development of NMF parsers
and translators.

The main motivation for remodelling the present NMF in EXPRESS is completeness.
New component models could be communicated with the same tools and protocols. A
potential EXPRESS-based STEP standard would not have to rely on an additional
non-EXPRESS standard.

Additional benefits can be expected for design and implementation of NMF compo-
nent model databases and management tools.

The present conclusion is that it would be worthwhile to model the present NMF in
EXPRESS. However, since the discussion of instances and systems can be carried out
separately, we have chosen to focus on this in our initial work.

5. NMF MODEL INSTANCES IN EXPRESS-G

In the following an EXPRESS-G representation of NMF component and system
model instances is presented. An instance is a specific occurrence of a model ex-
pressing the full state, in terms of its parameter values, variable values, and associated
data. Schemata 1 through 4 shows the EXPRESS-G representation of this data.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/11

Schema 1

Schema 1 shows the structure of an NMF model instance, which may appear as either
a System, with references to underlying subsystems, or as a Component with object
bags for variables, parameters, model parameters, and links, each of which is specified
more closely in the following schemata . Model parameters are named integers that are
used for dimensioning of arrays and matrices. Links are the connection ports of
Components. The ports of a System are called LinkReferences. They provide reference
chains to underlying Links. The distinction between the quantity subclasses parameters
and variables is that parameters always remain fixed at a given value throughout a
simulation, while variables, naturally, vary.

variables S [1:?]

parameters S[0:?]

model _parameters S[0:?]

links S[ 1:?]

Parameter

ModelParameter

Variable

Instance

System Component

1

subsystems S [0:?] name NameType

links S[ 0:?]

type

LinkReference

Link dimension

GeneralLink

1

connected_to A[1:?]

name

referencing

connected_to



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/12

Quantity

ContinousVariable

Name

Initial _value

Dimension

Current value

DimType

Variable

DiscreteVariable

1

1

GType
given

rows

cols

Parameter

NameType

name

INTEGERvalue

ModelParameter

ValType

ValType

Type

Schema 2

A quantity has a type (the NMF QUANTITY_TYPE referred to), a name, a dimension (if
non-scalar), and a current value. Variables also have an initial value, which holds the
state at the beginning of a simulation for dynamic (or state) variables and an initial
value guess for algebraic variables. Discrete variables is a provision for future devel-
opment of discrete time NMF models and is not currently used.



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/13

Schema 3

Continuous variables also have an optional flag given which, if present, indicates that a
variable, or selected parts of a field variable, are to be kept at a given value through-
out the simulation.

Schemata 3 and 4 specify storage structures and stored elements for current and initial
values (schema 3) and for given flags (schema 4).

Array
Elements A[1:?]

Rows A[1:?]

1

ValType

column

SparseMatrix

INTEGER

SparseField

1

rows L[1:?]

SparseArray

default

elements L [1:?]

Scalar

Matrix

REAL

Value

INTEGER
row

SparseElement
Value



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/14

Schema 4

Values may be stored in either a sparse matrix storage structure or in full matrices (or
ditto arrays). Initial values are generally stored in a sparse structure where only
exceptions from the default value are listed.

Since the great majority of variables are calculated, the given flag is stored in a sparse
structure as well. The flags themselves are either a reference to a time series of values
(not specified in detail) or a GConstant symbol, indicating that the variable is to be
kept at its initial value throughout the simulation.

6. CONCLUSIONS AND FUTURE WORK

Our present work suggests that EXPRESS is suitable for modelling of many of the
data structures that are relevant for continuous simulation of modular systems. If not
incorporated into the STEP effort, a continuous simulation language standardization
project could certainly operate in a similar fashion and use many of the same methods
and tools.

Next on the agenda will be to test the functionality of the suggested data structures by
writing a parser for, initially, IDA system model descriptions.

References

Augenbroe, G, and F. Winkelmann, 1991, Integration of Simulation into the Building
Design Process, proc. of Building Simulation ´91 , Nice, France, International Build-
ing Performance Simulation Association

GType

column INTEGER

1

rows L[1:?]

SparseGElement

SparseGArray

elements L [1:?]
GTimeseries GConstant

GSingleValue

1

value

SparseGType

SparseGMatrix

row

1



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/15

Augenbroe, G. (ed), 1993, COMBINE Final Report, CEC-DG XII-JOULE

ASHRAE 1993. Invitation to Submit a Research Proposal on an ASHRAE Research
Project: 839-TRP Development of a Component Model Translator for the Neutral
Model Format, American Society for Heating, Refrigerating and Air-Conditioning
Engineers, Atlanta, GA

Buhl, W.F., E.F. Sowell, and J-M Nataf, 1989. Object-oriented Programming Equa-
tion-Based Submodels, and System Reduction in SPANK, proc. of Building Simula-
tion ´89 , Vancouver, BC, International Building Performance Simulation Association

ISO TC 184 1993. The STEP Standard, draft international standard DIS 10303,
continuously since 1992 published in several different parts

Jeandel A. 1994, Personal communication

Kolsaker, K. 1994a. NEUTRAN-supported NMF Enhancements, presented to the TC
4.7 NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Kolsaker, K. 1994b. Simpler NMF Description of Advanced Models Using Hierarchi-
cal Modelling and Data Abstraction, to be presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE annual meeting 1994

Lorenz F. 1987, Reflections about Representation Methods, proc. workshop on the
future of building energy modelling, Ispra, Italy, Nov. 1987, CEC EUR 11603 EN
PREPRINT, May 1988

Lorenz F. 1990. Brief Description of the MS1 (Modelling System 1) Project, private
communication

Lorenz F., 1994, Comments on the Neutral model Format, presented to the TC 4.7
NMF Ad Hoc Subcommittee at the ASHRAE winter meeting 1994

Nataf J.-M. 1994, Translator from Neutral Model Format to SPARK, draft paper
presented to the TC 4.7 NMF Ad Hoc Subcommittee at the ASHRAE winter meeting
1994

Pelletret, R. 1994, Personal communication

Pelletret, R., S. Soubra 1994b. Standardizing Model Documentation - The
PROFORMA Experience, presented to the TC 4.7 NMF Ad Hoc Subcommittee at
the ASHRAE winter meeting 1994

Sahlin, P, E.F. Sowell 1989, A Neutral Format for Building Simulation Models, proc.
of Building Simulation ´89 , Vancouver, BC, International Building Performance
Simulation Association

Sahlin, P. 1991, IDA - a Modelling and Simulation Environment for Building Appli-
cations, Swedish Institute of Applied Mathematics, ITM Report no. 1991:2



Paper 6,  CIB W78 Workshop on Computer Integrated Construction, VTT, Helsinki, Aug., 1994

6/16

Sahlin, P., A. Bring, and E. F. Sowell, 1994. The Neutral Format for Building Simu-
lation, Version 3.01, Swedish Institute of Applied Mathematics, ITM Report no.
1994:2

Sowell, E.F. 1994. A Proposal for Hierarchical Submodels in NMF, to be presented
to the TC 4.7 NMF Ad Hoc Subcommittee at the ASHRAE annual meeting 1994



Paper 7 , presented at the IBPSA Building Simulation ‘95 conference, Madison, Wisconsin, August, 1995

7/1

FUTURE TRENDS OF THE NEUTRAL MODEL FORMAT (NMF)

Per Sahlin‡, Axel Bring‡, and Kjell Kolsaker†

KTH, Stockholm, Sweden, and NTH, Trondheim, Norway

ABSTRACT
The Neutral Model Format for building simulation
was proposed in 1989 as a means for documentation
and exchange of models. It has attracted much interest
and an acceptance as a potential standard, maintained
by ASHRAE’s TC 4.7 technical  committee. So far,
the format has only been directed towards component
(leaf) models, but many suggestions have been made
to extend it to also cater for systems of component
models. A brief review of NMF is given. This paper
makes detailed proposals for NMF extensions covering
hierarchical modeling, inheritance, equation-based
function definitions, link types with associated equa-
tions, and a general method to handle non-standard
extensions. A future development of NMF towards
STEP/EXPRESS is also discussed.

1. INTRODUCTION
Most researchers in building simulation agree that the
present technology - with a large number of stand-
alone monolithic Building Performance Evaluation
(BPE) tools - is unlikely to ever satisfy constantly
changing industrial demands. An entirely new ap-
proach is called for. One solution is provided by the so
called object oriented simulation environments
(OOSE), several of which are available or under
development. These new modular systems offer radi-
cally increased levels of adaptability, while customiza-
ble user interfaces ensure high quality end-user tools.
For developers, the production time of new BPE tools
is drastically reduced and the resulting tools can be
efficiently maintained. For end-users, the main ad-
vantage is realistic access to a range of related BPE
tools, that have uniform interaction principles and that
are data compatible with each other.

A common characteristic between OOSE’s is that
physical models are regarded as data; they are not
regarded as such in most present tools, but are gener-
ally inextricably bound to the program code. In
OOSE’s, submodels may easily be added, changed,
removed and combined arbitrarily. This is where the
real power of the new systems lie. However, it also
creates a common need for well validated and docu-
mented models, preferably expressed in a standardized

machine-readable way. In fact, without a compre-
hensive, validated library of ready made component
models in a relevant application area, most simulation
environments are of limited usefulness. To develop all
necessary models from scratch is, in most projects,
quite unrealistic. And since the cost of developing a
substantial library easily exceeds the development cost
of the simulation tool itself, it is important to be able
to reuse what other people have already done. This
was the basic motivation for proposing a text based
neutral model format to the building simulation com-
munity in 1989 [Sahlin and Sowell 1989]. Since then
the proposal has attracted a great deal of interest from
environment developers and users in several applica-
tion fields. Translators have been developed for IDA
[Kolsaker 1994a], SPARK [Nataf 1994], ESACAP
(prototype) [Pelletret 1994a], TRNSYS, HVACSIM+
[Sahlin 1995], and MS1 [Lorenz 1994]. Export and
import capabilities are planned for ULM (ALLAN)
[Jeandel 1994].

Pending formal standardization, ASHRAE (American
Society of Heating, Refrigerating, and Air-
conditioning Engineers) has formed an ad hoc com-
mittee that approves changes to the present format.

NMF has two main objectives: (1) models can be auto-
matically translated into the local representation of
several simulation environments, i.e. the format is
program neutral and machine readable; and (2) mod-
els should be easy to understand and express for non-
experts. The first objective enables development of
common model libraries, which can be accessed from
a number of simulation environments.

Section 2 gives a brief introduction to NMF. The pro-
posed extensions are presented in section 3 and illus-
trated with numerous examples. Section 4 suggests ad-
vantages attainable by a STEP [ISO TC 184 1993]
orientation of future NMF development.

2. NMF REVIEW
Internal component model behavior is described by a
combination of algebraic and ordinary differential
equations. Equations may be written in any order and
in the form

<expression> = <expression>;

NMF only states equation models, while solution of
equations is, in some cases, left to the target environ-
ment (e.g. IDA, or SPARK), or the NMF translator in
others (e.g. TRNSYS, or HVACSIM+).

NMF supports model encapsulation through a link
concept, i.e. models may only interact via variables

‡ Dept. of Building Services Engineering,
Royal Institute of Technology,
100 44 STOCKHOLM, SWEDEN
phone: +46-8-411 32 38,  fax: +46-8-411 84 32,
e-mail: abring   or    plurre@engserv.kth.se

† NTH/ VVS-teknikk
7034 TRONDHEIM, NORWAY
phone: +47-7-59 25 09, fax: +47-7-59 38 59
e-mail: Kjell.Kolsaker@termo.unit.no



7/2

appearing in LINK statements. To enhance and en-
courage model plug compatibility, links and variables
are globally typed. The idea is that a basic list of such
types should be included in each revision of the stan-
dard, but that users may add to the list as need arises.
A selection of such global types is located in Section
3.6.1.

A quantity type includes a physical unit and informa-
tion about potential (across) or flow (through) type. A
link type is simply an ordered list of quantity types.
An example of an NMF model using the heat equation
in one dimension can also be found in Section 3.6.1.

To enable direct model translation to input-output ori-
ented environments (e.g. TRNSYS, or HVACSIM+),
variable declarations have a role attribute indicating
IN for given variables and OUT for calculated ones.
Variables and parameters may be scalars, vectors, and
matrices. A parameter is anything that must remain
constant throughout every simulation. Links may also
be vectors, thus allowing models with variable number
of ports. Vector and matrix dimensions are governed
by a special type of parameter, model parameters.
Regular and model parameters are divided into two
categories, user supplied and computed, algorithmic
computation of which is described in the parameter
processing section.

Arbitrary foreign functions in Fortran 77 or C may be
defined, either globally or locally within a model.
Special functions are defined to handle discontinuities,
hysteresis, linearization, and errors. A more complete
account of NMF is given in the reference report
[Sahlin, Bring, and Sowell 19941]

3. PROPOSED EXTENSIONS
Ever since the original NMF paper there has been a
healthy flow of proposals for new features. The bulk of
these have concerned additional support for good
model and code structure. Some have suggested syntax
for extensions that were already implicitly defined in
terms of existing constructs; others take up entirely
new threads of thought. It seems that we now have
enough material in terms of modeling experience and
proposal “raw material” to decide on a well balanced
set of extensions, well in tune with the original NMF
ideas. This section will outline our view of a package
of such extensions: hierarchical modeling on the link
level; function definitions that may contain implicit
equations and that can be symbolically processed;
property links - link types with associated equations;
model inheritance; and a standardized gateway for
solver specific extensions.

                                               
1 An ASCII version of the reference report and other
NMF material is located at:
ftp://mailbase.ac.uk/pub/lists-f-
j/ibpsa-nmf. Connect as user anonymous
and give your e-mail address as password.

3.1 Hierarchical Modeling
Since the most imminent need for model exchange be-
tween environments is on the component rather than
on the system level, no standardized syntax for system
models was included in the original NMF proposal.
System models would, for the time being, be handled
separately in each target environment. This decision
has been criticized by many and there has conse-
quently been a number of proposed system modeling
constructs. Developers that are looking for a complete
modeling language clearly need a standardized way of
expressing system models. It might seem less obvious
that a language, mostly intended as a vehicle for
construction of component model libraries, would
need a system modeling capability. However, the
division between what is a component and what is a
system is generally so vague that it becomes unreason-
able to base any language limitations on it. The argu-
ments in favor of inclusion of system modeling fea-
tures seem quite convincing. The next issue is to
determine a good range of hierarchical modeling
constructs.

Most obvious is a system model construct, with refer-
ences to underlying submodels, which of course might
be system models themselves, and the possibility to
interconnect submodels at the link rather than the
individual variable level. This type of model is clearly
implied already in the existing link construct. We will
use the standard NMF two component system - a
“Heating Collector” (fig. 1) for mixing and heating
two air streams - to illustrate the suggested syntax.



Paper 7 , presented at the IBPSA Building Simulation ‘95 conference, Madison, Wisconsin, August, 1995

7/3

SYSTEM_MODEL Heating_Collector

PARAMETERS
HeatFlux my_flux S_P 100 “a parameter”;

SUBMODELS // Declare submodel instances
// class instance
// data

Collector Coll;
Heat_Coil Hcoil,

rise_time := 30;
// rise_time is a parameter of Heat_Coil

CONNECTIONS //Link level internal connections
// inst.link = inst.link;

Coll.Out = Hcoil.In;

LINKS // Lift (and rename) submodel links to
// become Heating_Collector links

// name = inst.link;
In1 = Coll.In1;
In2 = Coll.In2;
Out = Hcoil Out;
Sup = Hcoil.Supply;

DOCUMENTATION
END_DOCUMENTATION

END_MODEL

Submodels are declared (instantiated) in the
SUBMODELS Section; we will in this text use the
word instantiated for a declared submodel, although
the submodel is not physically instantiated until the
surrounding system model is. Parameter values and
variable initial values may be supplied in order to
override defaults in the instantiated model. Internal
connections between submodels are made in the
CONNECTIONS Section, where variables of joined
models are connected collectively at the link level,
with appropriate signs for THRU variables.

The LINKS Section defines those submodel links that
should be visible on the boundary of the defined sys-
tem, and thus be available for connection at the next
level up in the hierarchy.

A PARAMETER section may be declared for systems.
Parameter expressions may be used in the
SUBMODELS section.

The present NMF continuous_model maps in a natural
way to TRNSYS or HVACSIM+ type routines. The
system_model construct that we are suggesting here
would enable NMF expression of TRNSYS decks or
HVACSIM+ work files as well.

3.2 Hybrid System/Continuous Models
In this extension proposal, equations are not allowed
in system_ models, nor are submodel references al-
lowed in present continuous_models. It is in our
opinion vital to have a pure system model that only
contains submodel references and never deals with
individual variables and internal submodel behavior.
This allows simplified modeling software, without
equation manipulation capability, for interconnection
of existing submodels. Examples of such tools are the
present front-end programs for TRNSYS and
HVACSIM+. It also makes possible top-down model-
ing, where the precise structure of submodels and
connected links remain undecided. So far, NMF only
handles equation based submodels, but the intention is
to extend this to other model categories, perhaps most
imminently discrete time models for sampling con-
trollers etc. The (pure) system_ model, as proposed
here, will be able to accommodate submodels of sev-
eral types.

For simplicity, our initial extension idea was to avoid
models that mix submodel references with individual
equations - hybrid models - in NMF. Hybrid models
are difficult to handle for a TRNSYS/HVACSIM+
translator. Since they may contain any type of equa-
tion, they have to be mapped to type subroutines rather
than to decks/work files. This means that the hierar-
chical structure of the system model part of the hybrid
model will have to be flattened out. Since the hierar-
chy might be arbitrarily deep, generated variable and
parameter names in the flattened model will be either

Coll

HCoil

HeatingCollector

Out

HCoil.Out

HCoil.In

Coll.Out

Coll.In1 Coll.In2In1 In2

HCoil.Supply Sup

Fig. 1. System model with a collector and heating coil



7/4

very long, if you want to keep original names, or else
quite cryptic.

In our view, the modeling flexibility gained by allow-
ing hybrid models, does not by itself motivate the
necessary increase in translator complexity. However,
the required capability to flatten (or expand) hierar-
chical system models can also be useful in other ways.
Most importantly, it would enable a user to optionally
expand a system model into a single, flat, continuous
model, which in turn could be translated directly into
a type subroutine. It would also facilitate translation of
NMF system models to differential-algebraic equation
(DAE) solvers without any submodel support, such as
the popular DASSL solver [Brenan 1989]. Finally, it
would simplify general symbolic processing of system
models, to e.g. eliminate uninteresting variables, or
application of index (of nilpotency) reduction algo-
rithms. For these reasons, we have decided to propose
a hybrid model type, a continuous_system_model, that
mixes equations with references to submodels, which
have to be equation based. The heating collector with
a slight variation will illustrate the proposed syntax.

CONTINUOUS_SYSTEM_MODEL  Heating_Collector_w_eqn

VARIABLES
HeatFlux Heat_sup OUT “supply power” ;

PARAMETERS
HeatFlux my_fluxS_P 100 “a pram” ;

SUBMODELS //Declare submodel instances
// class instance

// data
Collector Coll;
Heat_Coil Hcoil,

rise_time := 30;
// rise_time is a parameter of Heat_Coil

EQUATIONS
// Regular equations and NMF assignments
0 = - Heat_sup + 10*Sin(Time*2*PI/(24*t_scale));
// may be mixed with link level internal connections
// inst.link = inst.link;
Coll.Out = Hcoil.In; // (as for pure system models)
// and arbitrary equations containing submodel
// variables with syntax (inst . link . var)
Hcoil.Supply.Q_sup/11.4 = Heat_sup/11.4;

LINKS // Lifted submodel links or
// locally defined links may be mixed

In_1 = Coll.In1; // a lifted link, as for pure systems
MTG In_2 POS_IN Coll.In2.M2, Coll.In2.T2, 

Coll.In2.W2;
// the parallel link, not lifted but
// redeclared. Locally defined variables
// (such as Heat_sup) may also appear here

Out = Hcoil.Out; //also lifted

DOCUMENTATION
END_DOCUMENTATION

END_MODEL

This hybrid model concept is very similar to that pro-
posed by [Sowell 1994]. Similarly to Sowell’s pro-
posal, submodels may only interact with each other via
variables appearing on the links of the joined models.

The fundamental difference between our proposal and
Sowell’s original concept is that it enables link level
operations as well as variable level operations, i.e.
submodel links may be connected or lifted on the link
level rather than always on the variable level. In the
example, all the variables of the collector Out link are
joined to the heater In variables in one operation.
Similarly the collector In1 link is lifted and renamed
In_1 in one operation. To illustrate the variable level
alternative, the In_2 link of the collector has been
decomposed into its individual variables, and then
(trivially) assembled again. The latter construction
would of course allow a redefinition of the link, by for
example adding an extra variable.

Connecting and using vector valued links requires a
more detailed specification, which is left out here.

3.3 New Function Definitions
In the present syntax (version 3), substructuring is
achieved mainly through the definition of functions.
The main purpose of external function definitions was
originally to provide a gateway to foreign code, and all
functions and subroutines had to be coded in a foreign
language. In version 3, NMF assignment modeling is
allowed in function definitions as an alternative to C
and Fortran and this is appreciated by most modellers,
who find it convenient to write everything in a single
language. Another advantage is that these NMF based
function definitions are as accessible as equations for
symbolic processing. The limited statement repertoire
of NMF could easily be processed both to generate
derivatives and to generate alternative inverses of
functions. Since function references are very natural in
an equation based context, we see this as a superior
alternative in many of the examples that have been
presented as motivation for hybrid modeling. Compare
for example the collector model with a call to a func-
tion in the equations (not through help variables) to
the suggested syntax with local links.

Our preferred syntax for equation and link sections,
referring to a function EnthalpyF(W,T) (not a continu-
ous model):

CONTINUOUS_MODEL  CollMoistAir

// documentation and declarations omitted

LINKS
// type name variables

MTG In1_air POS_IN M1, T1, W1;
MTG In2_air POS_IN M2, T2, W2;
MTG lvg_air POS_OUT Mo, To, Wo;

EQUATIONS
Mo = M1+ M2;



Paper 7 , presented at the IBPSA Building Simulation ‘95 conference, Madison, Wisconsin, August, 1995

7/5

Mo * EnthalpyF(Wo,To)
= M1 * EnthalpyF(W1,T1)
+ M2 * EnthalpyF(W2, T2);

Mo * Wo = M1*W2 + M2*W2;

The corresponding sections in our proposed hybrid
syntax with reference to a continuous_model
EnthalpyM:
CONTINUOUS_SYSTEM_MODEL  CollMoistAir

// documentation and declarations omitted

LINKS
// type name variables

MTG In1_air POS_IN M1, Ent1.Int.T ,
Ent1.Int.W;

MTG In2_air POS_IN M2, Ent2.Int.T ,
Ent2.Int.W;

MTG Lvg_air POS_IN Mo, Ento.Int.T ,
Ento.Int.W;

SUBMODELS
EnthalpyM Ent1; // Instantiation of

// CONTINUOUS_MODEL
EnthalpyM,

EnthalpyM Ent2; // with a single LINK:
// HTG Int H, T, W;

EnthalpyM Ento;

EQUATIONS
Mo = M1 + M2 ;
Mo * Ento.Int.H =  M1 * Ent1.Int.H

+ M2 * Ent2.Int.H;
Mo * Ento.Int.W = M1 * Ent1.Int.W

+ M2 * Ent2.Int.W;

It seems obvious that the hybrid model alternative is
considerably more awkward than the first version,
where Enthalpy is treated as a function rather than as
a submodel. The fundamental difference between a
submodel and a function call is that the latter does not
have an internal state, i.e. no internal parameters or
state variables are associated with each function call.
The restriction to only algebraic equations eliminates
state variables. Thus, we can only speak of instantia-
tion with respect to submodels and never to functions.

Kolsaker [Kolsaker 1994c] has suggested improved
declaration of INPUT and OUTPUT quantities of
functions, making them look more like the corre-
sponding declarations in continuous models and to
enable unit checking. This seems to be a very sound
alternative, although not backwards compatible.
Perhaps the old version, which has its merits in terms
of simplicity, could coexist.

Going one step further regarding function definitions,
we propose to allow algebraic equations among func-
tion assignments.

VOID FUNCTION AirPsych (P, M, T, W, PSat, H)

DOCUMENTATION
Definition of psychrometric relations for moist air
END_DOCUMENTATION

QUANTITIES

// type name role description
Pressure P IN “air pressure” ;
MassFlow M IN “not used in eq” ;
Temp T IN “dry bulb temp” ;
HumRatio W IN “humidity ratio” ;
Pressure PSat OUT “saturation pressure”;
Enthalpy H OUT “enthalpy” ;

CODE
// equations and assignments may both occur.
// Call function to calculate saturation pressure
PSat := ASHRAE_SaturationP (T) ;
0 = -H + CP_Air * T + W * (CP_VAP * T + HF_Vap) ;

END_CODE

END_FUNCTION

Quantities acting both as inputs and outputs (A_S
variables in the calling model), receive role I_O. Local
quantities are declared LOC. Variables of any role
may appear in equations, and all except IN may be
assigned to once, i.e. several assignments of the same
variable may occur, if in the same conditional state-
ment and excluding each other. Functions that return
a value are defined similarly, but with an output
quantity type instead of VOID. Such functions may
not in general have I_O variables.

These rules are not in complete harmony with current
role definitions in continuous models. Space will not
allow a thorough digression on these matters here.
However, it is possible (and preferable) to change, in a
backwards compatible fashion, the current role defini-
tions in continuous models to be more adequate and at
the same time to be in harmony with the definitions
above.

The new features we have so far discussed, the system
models and the extended function declaration, form a
natural set of changes that should satisfy the most im-
minent needs for hierarchical modeling. However, we
would like to go further and address two additional
structural problems.

3.4 Property Links
NMF link types are ordered sets of typed variables and
normally correspond to physical connections having
well defined properties. Examples are fluid flows,
electrical connections, control signals (physical or
logical). When defining link types, it is desirable to
select ‘minimal’ sets of variables, sufficient to define
the media properties relevant for the modeling level of
the connection. Dry air flows could e.g. be described,
either by (massflow, pressure, temperature) or
(massflow, pressure, enthalpy) but preferably not by
the redundant set (massflow, pressure, temperature,
enthalpy). Component models using these link types
will, however, often make use of quantities that have
to be derived from the minimal set in the link. An
example is a collector with temperatures in the links
but expressing enthalpy conservation.



7/6

Much of the discussion on NMF extensions has cen-
tered on how these (missing) property equations can
be handled in component models. We propose that
link property models be introduced to handle this.

Extended link types will then contain a (minimal) set
of variable types, plus a link model defining further
variables and their relations (to the minimal set).
Component models can optionally use the extra vari-
ables by referring to the link model, but without re-
peating the link model equations. Duplication of
equations is thus avoided in the description of compo-
nent models with common property links. NMF
translators will automatically add property equations
and variables as necessary in generated component
models.

We think that the basic information about such ex-
tended link types should be presented in a very com-
pact way among the present global link type defini-
tions, in order to retain the index character of this
section. The actual models, which in our opinion
should be limited to assignments and algebraic equa-
tions, could very well be declared in terms of a new-
style subroutine (VOID FUNCTION) definition. The basic
declaration among the global link types looks like this:

FatMoistAir  ( Pressure “air pressure”,
MassFlow,
Temp,
HumRatio )

DERIVED_FROM  air_psych
( Pressure “saturation pressure”,

Enthalpy ) ;

The subroutine air_psych would take the four first
variables as input and calculate the remaining two as
output. The order of the variables in the formal argu-
ment list of air_psych would be the same as in the link
type declaration.

The equation and link sections of a moist air collector
would then be:

EQUATIONS
Mo = M1 + M2 ;
Mo * Ho = M1 * H1 + M2 * H2 ;
Mo * Wo = M1 * W1 + M2 * W2 ;

LINKS
// type name variables

FatMoistAir In1_air P, POS_IN  M1, T1, W1,
VOID, H1;

FatMoistAir In2_air P, POS_IN  M2, T2, W2,
VOID, H2;

FatMoistAir Lvg_air P, POS_OUT Mo, To,
Wo, VOID, Ho;

3.5 Model Inheritance
Another feature that is missing in NMF is a possibility
to exploit similarities between related models. An
obvious way to handle this is via inheritance, in the
manner of OOP. The most important reasons for an

NMF class structure are that we may express informa-
tion about a compatible family of models in a single
place, and that trivial specializations of a model may
be expressed separately, e.g. different parameter
processing for different component manufacturers etc.

The single inheritance scheme we are suggesting
obeys the following rules:

I. New declarations under an NMF heading are
added after previous (inherited) declarations

II. Uniquely identifiable declarations may be overrid-
den, except for assignments, which are never over-
ridden.

This means that, for the case of continuous models,
equations and assignments may be added to previously
defined ones. Overriding previously made assignments
is in some cases technically possible, but would result
in cryptic code. Redeclaring a previously declared
link, variable, or parameter, cancels the previous
declaration completely. Overriding will be used mostly
for link declarations, to provide increasingly detailed
link types.

A new keyword CLASS is introduced. A CLASS (in
our definition) may not be instantiated. It is used only
for structuring purposes, as a repository for class-com-
mon definitions.

Multiple inheritance is excluded. Its merits in this
context are questionable, and it may result in declara-
tion collisions. These could be resolved by allowing
e.g. aliasing of inherited properties or by letting the
order of the inheritance list carry meaning. However,
since we are striving for simple solutions, our sugges-
tion is that single inheritance is sufficient for the
moment.

As in illustration of the technique, we can choose col-
lector models.

CLASS CollTemplate

DOCUMENTATION
END_DOCUMENTATION

LINKS
// type name variables

MT InAir1 POS_IN M1, T1 ;
MT InAir2 POS_IN M2, T2 ;
MT OutAir POS_OUT Mo, To ;

EQUATIONS
// mass balance
Mo = M1 + M2 ;

VARIABLES
MassFlow M1 IN "mass flow 1 in"
MassFlow M2 IN "mass flow 2 in"
MassFlow Mo OUT "mass flow out"
Temp T1 IN "temp of flow 1"
Temp T2 IN "temp of flow 2"
Temp To OUT "temp of flow out"



Paper 7 , presented at the IBPSA Building Simulation ‘95 conference, Madison, Wisconsin, August, 1995

7/7

END_MODEL

The template is not a complete model by itself; at least
enthalpy balance has to be added.

CONTINUOUS_MODEL (CollTemplate) DryColl

EQUATIONS
// add enthalpy balance
Mo * CP_AIR * To = M1 * CP_AIR * T1

+ M2 * CP_AIR * T2 ;

END_MODEL

The template can also be used to define a collector for
moist air.

CONTINUOUS_MODEL (CollTemplate) MoistColl

LINKS // redefine all three links
// type name variables

MTG InAir1 POS_IN M1, T1, W1 ;
MTG InAir2 POS_IN M2, T2, W2 ;
MTG OutAir POS_OUT Mo, To, Wo ;

EQUATIONS
// add enthalpy and humidity balances
Mo * EnthalpyF(To,Wo)

= M1 * EnthalpyF(T1,W1)
+ M2 * EnthalpyF(T2,W2) ;

Mo * Wo = M1 * W1 + M2 * W2 ;

VARIABLES
// add declarations for humidities
HumRatio W1 IN "hum ratio of flow 1"
HumRatio W2 IN "hum ratio of flow 2"
HumRatio Wo OUT "hum ratio of flow out"

END_MODEL

Now, let us try to decompose the Heating_Collector
using inheritance.

CLASS HC_template

DOCUMENTATION
Common doc’s go here
END_DOCUMENTATION

SUBMODELS // this section is (optionally)
// declared here for clarity only

// GENERIC instance
GENERIC Coll;
GENERIC Hcoil; // no data allowed for

// GENERIC

CONNECTIONS
// inst.link = inst.link ;

Coll.Out = Hcoil.In ;

LINKS
// name = inst.link ;

In1 = Coll.In1 ;
In2 = Coll.In2 ;
Out = Hcoil.Out ;

END_MODEL

One possible use of this resource is of course a new
edition of the Heating_Collector:

SYSTEM_MODEL (HC_template) Heating_Collector

DOCUMENTATION
Suplementary, class specific, doc’s are added here
END_DOCUMENTATION

SUBMODELS
// class instance
// data

Collector Coll ;
Heating_Coil Hcoil

Q_max := 1000, rise_time := 30;

END_MODEL

A nice feature is that we easily may populate the
HC_template with new submodels, which may have
entirely different link  structures.

SYSTEM_MODEL (HC_template)
Moist_Heating_Collector

DOCUMENTATION
END_DOCUMENTATION

SUBMODELS
// class instance
// data

Moist_Collector Coll ;
Moist_Heating_Coil Hcoil

Q_max := 1000, Other_data := 4017;

END_MODEL

3.6 NMF Extension keyword
Each implementor of NMF based tools has added
extensions as necessary for the targeted environments.
This is completely in accordance with the original
ideas, provided that the NMF part of a full model
description remains meaningful to others, and that
extensions can be easily removed, leaving standard
NMF only. It has become obvious that it would be an
impossible endeavor to strictly define what is truly
neutral about a model. The only feasible solution is to
construct a working process for the successive inclu-
sion of features of sufficient common interest. In
principle, the ASHRAE NMF committee provides a
forum for additions to the language but individual
users and groups of users need access to quicker, more
informal, means.

Kolsaker [Kolsaker 1994a] has to this effect suggested
a special pair of keywords EXTENSION and
END_EXTENSION on the continuous model level, to
delimit whatever information, in a free format, that
might be useful in a particular context. The only
requirement on the delimited information is that the
second token should identify the purpose of the fol-
lowing text and be readable by any NMF translator.
Aside from being a good pragmatic solution for indi-
vidual users, the suggested mechanism would work as



7/8

a source of inspiration for formal extension proposals -
a gateway for organic growth.

We propose that extensions may occur in a number of
well defined places in the NMF code: among global
declarations, in models, and tagged on to individual
statements. Any front-end NMF translator should then
be prepared to store the unprocessed extension code
for subsequent parsing in the appropriate back-ends.
Since extensions may appear frequently in target code
for a particular solver, we suggest an abbreviated
keyword pair: EXT and END_EXT.

3.6.1 NMF Samples with possible extension locations

Extension keyword pairs are marked with ➳; only
places of principal importance have been selected.

QUANTITY_TYPES
// Quantity types are used for both variables and
// parameters. For parameters the kind is irrelevant.
// CROSS = Potential, non-directional
// THRU = Flow, directional
// type name unit kind */

Enthalpy "J/kg" CROSS ➳;
Factor "dimless" CROSS ;
HeatCapM "J/(kg K)" CROSS ;
HeatCondA "W/(m2 K)" THRU ;
HeatFlux "W" THRU ;
HumRatio "kg/kg" CROSS ;

➳  //Extensions may occur once  at the global level

LINK_TYPES
//typename (variable types)

TQ (Temp, HeatFlux) ➳;

MT (MassFlow, Temp) ➳;
PMT (Pressure, MassFlow, Temp) ;
MoistAir (Pressure, MassFlow, Temp, HumRatio) ;

A sample thermal model of a wall:

CONTINUOUS_MODEL tq_hom_wall

DOCUMENTATION
A 1-D finite difference wall model. One homogeneous layer. TQ
interfaces on both sides.
END_DOCUMENTATION

➳ //Once at the model level

EQUATIONS
//NMF assignments can always be interpreted as if
//they were equations

Taa := 2 * Ta - T[1] ➳;
Tbb := 2 * Tb - T[n] ;

// space discretized heat equation, T' indicates dT/dTime
FOR  i = 2, (n-1)

c_coeff * T'[i] = T[i - 1] - 2. * T[i] + T[i + 1] ➳;
END_FOR ;

c_coeff * T'[1] = Taa - 2.* T[1] + T[2] ➳;

c_coeff * T'[n] = T[n - 1] - 2. * T[n] + Tbb ;
// boundary equations
0 = -Qa + d_coeff * (Taa - T[1]) ;
0 = -Qb + d_coeff * (Tbb - T[n]) ;

LINKS

// type name variables

TQ a_side Ta, POS_IN Qa ➳;
TQ b_side Tb, POS_IN Qb ;

VARIABLES
// type name role description

Temp T[n] OUT "temperature profile" ➳ ;

Temp Ta OUT "a-side surface temp" ➳ ;
Temp Tb OUT "b-side surface temp" ;
Temp Taa LOC "a-side virtual temp" ;
Temp Tbb LOC "b-side virtual temp" ;
HeatFlux Qa IN "a-side entering heat" ;
HeatFlux Qb IN "b-side entering heat" ;

MODEL_PARAMETERS
// type name role [defmin max]  description

INT n SMP 5 3 BIGINT "number of temp

layers" ➳ ;

PARAMETERS
// type name role description
// supplied parameters

Area a S_P "wall area" ➳ ;
Length thick S_P "wall total thickness" ;
HeatCondL lambda S_P "heat transfer coeff" ;
Density rho S_P "wall density" ;
HeatCapM cp S_P "wall heat capacity" ;

// computed parameters
generic d_coeff C_P “lambda*a/dx" ;
Length dx C_P "layer thickness" ;
generic c_coeff C_P "rho*cp*dx*dx/

(lambda*t_scale)" ;

PARAMETER_PROCESSING

dx := thick / n ➳ ;
c_coeff := rho * cp * dx * dx / (lambda * t_scale) ;
d_coeff := lambda * a / dx ;

END_MODEL

4. STEP RECONCILIATION
Since the first proposal in 1989, the discussion about
various NMF-constructs has focused on grammar, as
indeed this paper does as well. The textual appearance
of selected models has been the main object. This is of
course quite appropriate for the equation core of com-
ponent models, but for instantiated system models and
related data it may be fruitful to also regard data
models directly, and to treat the textual representation
as one of several possible views. STEP/EXPRESS [ISO
TC 184 1993] seems to be an appropriate vehicle for an
extension of the future NMF discussion in this direc-
tion.



Paper 7 , presented at the IBPSA Building Simulation ‘95 conference, Madison, Wisconsin, August, 1995

7/9

Further reasons for the employment of STEP technol-
ogy for NMF include:

• STEP dominates product model applications,
which will be an important source for generation
of simulation models, and these should therefore
be encompassed by STEP, either as pure aspect
models or as parts of global models

• Many existing STEP/EXPRESS resources will be
useful for development of NMF-oriented applica-
tion tools

In our initial work in this area [Sahlin and Johansson
1994], we have chosen to focus only on the problem of
defining conceptual models of NMF instances, and of
hierarchical systems of such instances, i.e. data mod-
els corresponding to the system_model construct
proposed in this paper. The textual description of the
data, found in a STEP physical file, would simply be
another completely equivalent representation, less
appealing to the human eye, but processable by stan-
dard STEP tools. In the first set of conceptual models,
only the state of a model is encompassed, represented
by its quantity values, whereas the internal component
behavior, represented by the equations, is not treated.
It is assumed that underlying NMF continuous_models
are known to all parties.

Another interesting issue is of course the models of in-
ternal behavior as well, i.e. to model the present NMF
in EXPRESS, with entities such as equation, if_then_el-

se_clause, etc. Such models are necessary for develop-
ment of NMF parsers and translators.

The main motivation for remodeling the present NMF
in EXPRESS is completeness. New component models
could be communicated with the same tools and proto-
cols. A potential EXPRESS-based STEP NMF stan-
dard would not have to rely on an additional non-
EXPRESS standard. Additional benefits can be ex-
pected for design and implementation of NMF com-
ponent model databases and management tools. The
present conclusion is that it would be worthwhile to
model the present NMF in EXPRESS.

5. CONCLUSIONS
NMF seems to be well on the way of becoming a com-
monly accepted format for exchange of simulation
models. The ASHRAE committee presently in com-
mand provides, for the time being, an adequate neutral
forum for the development process. We believe that
the existence of a standard will be a salient feature in
the evolution of object oriented simulation environ-
ments, which in turn will provide the building sector
with appropriate and powerful simulation tools.

REFERENCES
Brenan, K.E., S.L. Campbell, and L.R. Petzold, 1989
“Numerical Solution of Initial-Value Problems in Differen-
tial-Algebraic Equations”, North Holland

ISO TC 184 1993. “The STEP Standard”, draft
international standard DIS 10303, continuously since 1992
published in several different parts

Jeandel A. 1994, Personal communication

Kolsaker, K. 1994a. “NEUTRAN-supported NMF
Enhancements”, presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE winter meeting 1994

Kolsaker, K. 1994b. “Simpler NMF Description of
Advanced Models Using Hierarchical Modelling and Data
Abstraction”, presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE annual meeting 1994

Kolsaker, K. 1994c "NEUTRAN - A Translator of Models
from NMF into IDA and SPARK", Proceeding to the
BEPAC conference, BEP'94, York

Lorenz F. 1990. “Brief Description of the MS1 (Modelling
System 1) Project”, private communication

Lorenz F., 1994, “Comments on the Neutral model
Format”, presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE winter meeting 1994

Nataf J.-M. 1994, “Translator from Neutral Model Format
to SPARK”, draft paper presented to the TC 4.7 NMF Ad
Hoc Subcommittee at the ASHRAE winter meeting 1994

Pelletret, R. 1994, Personal communication

Sahlin, P, E.F. Sowell 1989, “A Neutral Format for
Building Simulation Models”, proc. of Building Simulation
´89 , Vancouver, BC, International Building Performance
Simulation Association

Sahlin, P., A.Bring, E.F.Sowell 1994, “The Neutral Model
Format for Building Simulation”, Version 3.01, ITM report
1994:4.

Sahlin, P., C. Johansson, 1994 “NMF-Based Aspect
Models in STEP for Building and Process Plant
Simulation”, proc. of the CIC W78 workshop on computer
integrated construction, Aug. 22-24, 1994, VTT, Helsinki,
Finland

Sahlin, P. 1995. Dec 94 - Feb. 95 “Progress Report on TRP-
839 Development of a Component Model Translator for the
Neutral Model Format (NMF)”, Report submitted to
ASHRAE

Sowell, E.F. 1994. “A Proposal for Hierarchical Submodels
in NMF”, presented to the TC 4.7 NMF Ad Hoc
Subcommittee at the ASHRAE annual meeting 1994


