
The Neutral Model Format for Building Simulation

Per Sahlin Axel Bring
 Bris Data AB

 and
 Building Sciences

 Royal Institute of Technology
 100 44 STOCKHOLM, SWEDEN

 phone +46-8-411 32 38
 e-mail: plurre@engserv.kth.se

 Edward F. Sowell
 Dept. of Computer Science

 California State University, Fullerton
 Fullerton, CA 926 34

 phone: +1-714-773-32 91
 e-mail: sowell@fullerton.edu

ABSTRACT

The idea of a completely general simulation environment, where a user can
interconnect predefined submodels freely into a tailored system model, is today a
reality. In the field of building simulation, existing environments like TRNSYS and
HVACSIM+ along with several new developments, allow fully coupled models of
envelope, distribution systems and controls at an arbitrary level of detail. However,
the ultimate usefulness of any of these tools hinges on the existence of a
comprehensive library of component models and the development cost of such a
library will easily exceed that of the environment itself. In this report a Neutral
Model Format (NMF) is specified. NMF models can be automatically translated
into the format of a number of environments. Based on NMF, independent libraries
can be established, and inter-environment model exchange is likely to increase.
Since the first NMF proposal in 1989, several prototype translators have been
developed, model libraries have been written, and the concept has earned
acceptance among experienced users. This report repeats the modelling principles
underlying NMF and presents a brief reference manual. A formal syntax definition
and some model examples are presented in appendices.

Version 3.02
June 1996

This work is supported in part by the Swedish Council for Building Research under contracts
870299-8, 880509-2, 890808-8, 900215-1, 900368-5, 930212-1, and 930792-0; the Swedish
National Board for Technical Development under contracts 90-02868 and 90-02927; the Nordic
Construction Company; and the Development Fund of the Swedish Construction Industry under
contract 1066; American Society for Heating, Refrigerating and Air-conditioning Engineers
under contract RP-839.

2

CONTENTS

1. BACKGROUND ... 4

2. SCOPE... 5

3. MODEL STRUCTURING PRINCIPLES .. 7

3.1 EQUATION MODELLING... 7
3.2 COMPONENT INTERCONNECTION... 9
3.3 PROPERTY INHERITANCE .. 11
3.4 HIERARCHICAL DECOMPOSITION... 12
3.5 MODEL VALIDATION .. 12

4. NMF REFERENCE MANUAL .. 13

4.1 GLOBAL DECLARATIONS... 15
4.2 CONTINUOUS MODEL ELEMENTS.. 16

4.2.1 Equations .. 17
4.2.2 Assignment modelling.. 18
4.2.3 Links.. 20
4.2.4 Variables ... 22
4.2.5 Parameters and Model Parameters.. 23
4.2.6 Parameter Processing.. 24
4.2.7 Functions... 24

4.3 SPECIAL FUNCTIONS... 25
4.3.1 Error Subroutine... 25
4.3.2 Event functions.. 25
4.3.3 Model linearization ... 26
4.3.4 Delays ... 27

5. ACKNOWLEDGEMENTS .. 27

6. REFERENCES.. 27

7. APPENDIX 1 SYNTAX DEFINITION FOR NMF... 30

8. APPENDIX 2 EXAMPLES OF MODEL DEFINITIONS.. 39

9. APPENDIX 3 CHANGES IN VERSION 3.. 56

10. APPENDIX 4 A WORKED SYSTEM EXAMPLE... 59

3

Preface to version 3.02

Version 2 of this report was published in August 1992, version 3 and 3.01 during the
spring of 1994. The present version incorporates errors and minor changes that have
been recorded since then. Many errors have been reported by attentive readers, but
the bulk of corrections is a side effect of the work of Dr. Pavel Grozman, in the
development of the ASHRAE (American Society of Heating, Refrigerating and
Air-conditioning Engineers) NMF Translator.

Another deliverable of the ASHRAE NMF Project (RP-839) is a much needed NMF
Handbook [SAHLIN 1996]. Up until now, there has been no pedagogical NMF
material available. Due to the existence of the Handbook, some of the general NMF
discussion can be removed from this text. This process has been initiated in this
edition, and it is expected that future versions will have even more reference
character.

The changes in the report, which have been incorporated into both the text and the
formal syntax, have been marked with a solid vertical line in the right margin, for the
benefit of those who are acquainted with the previous version.

NMF version 3.02 and the draft version of this report were approved by the
ASHRAE NMF Committee at the Atlanta meeting, February 20, 1996.

Since the previous version was published, an NMF discussion list and ftp area has
been started. To join the list, send an e-mail to

mailbase@mailbase.ac.uk

The Subject line is irrelevant, but the Body should read:

join ibpsa-nmf <yourfirstname> <yourlastname>

Your e-mail address is automatically recorded, so join from your own account.
Recent NMF developments are reported to this list and a small archive of NMF
related material is also available.

Examples of component models are found in Appendices 2 and 4. Those in
Appendix 2 are primarily chosen to illustrate features of the format, and are
sometimes referenced in the main text. Appendix 4 contains a worked system
example together with the constituent models. The example was developed in
cooperation with David Lorenzetti of MIT.

4

1. BACKGROUND

The Neutral Model Format (NMF) was first proposed at the Building Simulation '89
conference in Vancouver, Canada. The basic objective of NMF is to provide a
common format of model expression for a number of existing and emerging
Simulation Environments, e.g. TRNSYS, HVACSIM+, ALLAN, CLIM 2000, EKS,
IDA, SPARK. All of these are similar in that user defined mathematical models of
components are expressed in separate modules that the user can interconnect as
needed to define the wanted system model. At a given level of idealization, a typical
component model for any of these simulation environments can be expressed as a
system of ordinary differential and algebraic equations. NMF draws on this similarity
in order to define a standard source format from which models can be automatically
or semi-automatically translated into the specific format of any environment.

A second objective is to provide a natural form of model expression, i.e. a form
which makes it easy and fast to express new models for any environment - a form
which appeals to engineers as well as to well trained simulation experts.

Given such a format a number of benefits can be expected. First, a single or several
common model libraries can be formed, which will greatly enhance the usefulness of
any individual environment. Secondly, informal model communication between
users of different environments can be expected to increase resulting in higher model
quality and usage. Finally, enhanced model and user mobility between environments
will result in repeated environment comparisons and thereby provide more accurate
information about relative environment performance.

The purpose of the Vancouver paper [SAHLIN 1989] was to present the principal
idea and obtain feedback from the Building Simulation community regarding the
attractiveness and feasibility of the concept as such. Since then a number of positive
things have occurred.

- The format has received sustained interest from simulation environment
developers as well as from experienced modellers, most of whom have found the
format useful for practical modelling and have provided valuable criticism.

- Translators have been developed for the SPARK , IDA, TRNSYS, HVACSIM+,
and ESACAP simulation environments proving feasibility of the concept

- Several realistic model libraries have been developed in, or translated into NMF.

- An ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning
Engineers) subcommittee of Technical Committee 4.7 (Energy Calculations) has
been formed to act for the introduction of NMF as an ASHRAE standard for
model definition.

These events have triggered a need for an updated introduction and a more complete
NMF reference, hence, the present report. In Section 2, the scope of the NMF effort
is more carefully discussed, leading up to an examination of the principal concepts in
Section 3 and a format reference manual in Section 4. Appendix 1 contains a formal,

5

but human readable, BNF-oriented syntax definition and Appendix 2 holds some
model examples. The changes in version 3 of NMF are listed in Appendix 3 and
Appendix 4 presents a small system, its components in NMF and some results.

2. SCOPE

Although NMF has been developed primarily to cater to the needs of the building
simulation field, there is no built-in restriction that limits the usage to this area. In
fact, it is naturally our hope that NMF libraries will be developed in related fields.
The present focus is merely due to the better likelihood of obtaining a common
agreement within a single application. However, there are some other more definite
boundaries to the range of applicability of NMF that we shall try to examine in the
following. The remainder of this section may safely be omitted on first reading, but it
is our experience that most "second generation" questions pertain to these issues.

Most important is to recognize the difference between NMF and more complete
modelling languages. A complete modelling language attempts to express all there is
to know about every model for (usually) a single simulation environment, i.e. the
language is essentially the sole mode of communication with the designated
environment. Examples of modern modelling languages are DYMOLA, LICS
[ELMQVIST 1978, 1986] and OMOLA [ANDERSSON 1990]. Another example is
CSSL (Continuous System Simulation Language) which was defined in 1968 and
has had, and still has, a tremendous impact on the simulation field. The momentum
of the CSSL language has resulted in the development of several simulation
environments for CSSL.

NMF, on the other hand, attempts to define a standard way of expressing models for
a number of given environments of similar type. This is obviously more difficult,
since not only syntax but also semantic content of model definitions varies
considerably between environments. In fact, if it were not for the universal language
of mathematics underlying it all, the project would probably be quite unrealistic.

For these reasons, NMF is presently limited to the primitive, or leaf, models of the
target environments, while no attempt is made to standardize composite models and
other structures. To put it in perhaps more familiar terms, the present NMF will be
able to generate a large class of TRNSYS types (primitive models) but not TRNSYS
decks (composite models plus additional information.). Since the original NMF
proposal a number of extensions have been proposed by several researchers. The
most recent proposal attempts to compile input from several proposers and covers
also composite or system models in NMF [SAHLIN 1995]

Generally speaking, one could say that the priorities in defining NMF have been:

1. multi environment compatibility,
2. intuitiveness,
3. completeness;

6

whereas the reverse ordering seems to apply to most alternative efforts of modelling
language definition.

The present version of NMF is furthermore restricted to models with a piecewise
continuous behavior, i.e. basically models that can be expressed in terms of
equations (with some extensions.) This includes the absolute majority of models in
use today in thermodynamical modelling, e.g. walls, windows, heat exchangers,
pipes, controls etc. Some extensions of basic equations, explained further in Section
4.2.2, allow definitions of models with hysteresis, such as thermostats, actuators
with backlash and, in principle, also models with delay. Models with delay are easy
to express in this framework, but they are (in any framework) very difficult to treat
numerically even with modest requirements of reliability. We will return to the
question of numerical performance of target environments in a moment.

Models that are described in discrete time are currently not encompassed. Examples
of such models are micro processor based controllers, in the case when the sampling
frequency is an interesting simulation parameter, and also models that are expressed
in discrete time for reasons of numerical efficiency, such as building simulation style
transfer function models (based on the z-transform.)

The question of differing numerical strengths of target environments is important
and we shall devote some attention to it here. At a first glance, a reasonable policy
might be to require that every NMF model should run in every environment.
However, this would be extremely restrictive and could potentially hamper
numerical development, which is the last thing we would like to see. Therefore, the
present policy is that an approved model should execute in some generally
available, general purpose simulation environment. Naturally, this might complicate
the process of transferring common library models to a local environment library,
and also potentially diminish the incentive to submit advanced local models to a
common library, but it is still felt that this is the only viable policy.

In the sequel it will be assumed that all models are to be subjected to a review
procedure for inclusion in common model libraries, although as we have seen, NMF
can be useful even without the existence of large common libraries.

Some aspects of library writing that have not yet been treated in depth in
conjunction with NMF include model documentation guidelines, modelling
methodology and model library architecture. We shall in the remainder of this
section say something about these issues.

It is reasonable to demand that models in a common library are accompanied by a
consistent, well structured text, explaining e.g. intended usage of the model,
assumptions made, validations made etc. The definition of general - not too
cumbersome - guidelines is not completely straightforward since they must apply to
anything from a simple thermal conductance, to e.g. a comprehensive dynamical
cooling coil model or to an intricate controller model. A number of efforts have been
made in this direction for the field of building simulation, e.g. [CLARKE 1984,
DUBOIS 1988 and RONGERE 1992].

7

The term modelling methodology refers to a structured procedure to follow in the
process of defining an appropriate set of models for a given area of application and
level of approximation. An important side effect is also a well structured
documentation. The most comprehensive work, of which we are aware, in this area
with application to thermodynamical systems is that of [RONGERE 1992] and
co-workers at EDF in France.

NMF is based on a few model structuring principles that will be discussed in the next
section. These are intended to encourage structured modelling much in the same
way as some programming languages support well structured programming.
However, given these principles we have found that the importance of good model
library architecture hardly can be overestimated. The problem is similar to that of
defining a proper set of base classes in object oriented programming. Perhaps it is
even more demanding in our case, since models tend to be reused to a higher degree
than is usually the case with object classes. This is an area where much work is
needed, in the form of well designed sample libraries, rather than in general
guidelines and recommendations.

3. MODEL STRUCTURING PRINCIPLES

NMF is based on a few model structuring principles. Much of this is inspired by the
work of [ELMQVIST 1986] and [MATTSSON 1988].

1. Continuous models are expressed in terms of equations
2. Variables and interconnection links are typed
3. Models can inherit properties from ancestors
4. Large models must allow hierarchical decomposition
5. Validation is integrated into the modelling process

The principles are briefly described and defended below.

3.1 Equation modelling

The choice of equations as the basic vehicle for description of internal model
behavior is by no means indisputable. There are alternative formalisms that with
some extensions provide the necessary generality, e.g. bond graphs and electrical
analogies. The in-depth discussion of the considerations that lie behind our choice
of equations is beyond our purposes here. Two of the main arguments that support
our choice are: (1) Equations are familiar to modellers, i.e. models are legible (in
text form) without special training and (2) much of the beauty and nice numerical
properties of alternative representations are lost when they are made sufficiently
general.

Continuous NMF models are described by a fully implicit differential-algebraic
system of equations which for the general case can be written

f(x, x’ , p, t) = 0,

8

where f is a vector function of the variable vector x, its time derivative x’ , a
parameter vector p, and time t. In all cases of interest here, this system of equations
will be underdetermined; some of the x:s will have to be given as functions of time.

The remainder of this subsection will be devoted to a discussion about the merits of
input-output free models. Readers, who are already convinced in this issue, may
omit the following without loss of continuity. Let us, for the sake of the discussion,
separate between the equation model of a component and a problem for the same
component, where the problem is the underdetermined equation model together with
a selection of given variables. For example, the equation model of a thermal
resistance may be written

0 = q - U A (t1 - t2),

where q is the heat flow through the resistance and t1 and t2 are the terminal
temperatures. Now, for this simple one-equation model three different problems, i.e.
combinations of given and calculated variables, may be posed:

 1. t1 and t2 given and q calculated
 2. t1 and q given and t2 calculated
 3. t2 and q given and t1 calculated

All three problems are well posed, provided U and A are nonzero. In the following,
well posed will be used in the sense: able to produce a locally unique non-trivial
solution. For more complex models only some selections of given variables will yield
well posed problems.

Each component model in most current simulation environments, e.g. TRNSYS and
HVACSIM+, is described as an equation model along with a single input-output
selection (a problem in our sense). The component modeller makes this selection
when the model type routine is written.

The pre-selection of given variables leads in some cases to limitations in the actual
use of the models. Frequently a system modeller, using available types, would like to
connect the inputs of one component with the inputs of another and similarly for the
outputs. This, of course, is impossible and one of the component models has to be
rewritten, with a different input-output selection. The system modeller is forced to
become a component modeller and write, debug and compile FORTRAN code.

These difficulties are overcome in some of the more recently proposed environments
(e.g. SPARK and IDA) by leaving the input-output designation to the environment.
This will substantially increase the versatility of each component model.

The automatic input-output designation in more recent environments is done by
keeping equation models separate from input-output selections until the components
are actually connected together. This separation is only possible if equations are
declared explicitly, the way they are in NMF.

9

Since some environments can do without explicitly stated input-output designations
in their component model format, one could argue that this information is redundant
in NMF, which should be free of environment specific non-essential information.
There are however several reasons for including one possible input-output
designation (one problem) for each NMF component model. First, a viable
input-output set is a part of the required validation procedure. That is, a component
modeller has to demonstrate at least one well posed problem for a model. Secondly,
if this information was to be left out, automatic translation would be impossible for
input-output oriented environments.

3.2 Component Interconnection

Having focused briefly on the internal behavior of component models we turn to the
interconnection mechanism between them. Little attention has been devoted to this
topic in many of the past discussions on the development of common component
libraries, although model reuse and exchange have been the primary motivations.
However, one should be aware that sets of components developed by various groups
will remain to be incompatible, even when stored in a common library, unless a
structured way of constructing inter-component links is imposed. Otherwise, the
sockets and the prongs simply will not fit together.

The development of a set of component models for a simulation task involves
numerous decisions, some of which are crucial and others which are less
fundamental in nature. Unfortunately, all of these decisions, not just the crucial ones,
will later on influence the compatibility with other models. It is our aim here to
provide a component format which encourages compatible choices among the trivial
decisions without imposing any restrictions on the fundamental ones.

One of the initial crucial decisions to be made is the choice of a set of variables that
will represent the behavior of the simulated system to an appropriate degree of
accuracy. For example, in a simple HVAC circuit without cooling it might be
sufficient to choose dry air mass flow rate and air enthalpy as the main variables
carrying information between individual components. We are referring here to the
set of variables involved in the interaction between components; additional variables
may be used internally. Once this choice of interaction variables has been done, a
compatible family of components can be developed. For the HVAC circuit this
might involve e.g. a collector, a distributor, a heating coil and a simple zone model
as shown in Figure 1.

10

Collector

 min1 0 = -mout + min1 + min2 mout

 hin1 0 = -houtmout + hin1min1 + hin2min2 hout

 min2 hin2

Distributor

 mout1 h

 min mout2

0 = -min1 + mout1 + mout2

 h h

Heating Coil

 m m
0 = -hout + hin + qsource/m

 hin hout

Zone

 m hin

h = hin + qair/m

cpair temp = h

m = func(temp)

 m h

Figure 1.

The zone model has a built in control function, func , which determines the supply
air flow rate as a function of zone temperature.

The choice of interaction variables is affected by the component model complexity.
For example - if we wish to consider moist air problems - a cooling coil model
should include the effect of condensation, and thus some measure of air humidity
must be included in the air characterization. If the cooling coil is to be used in
conjunction with the previous models, the list of interaction variables to be carried
around the circuit must be expanded. The principle here is that the component in
need of the most information determines the interaction set of variables.
Components with smaller needs will ignore unnecessary circuit variables.

Now, let us look at some of the trivial decisions for our sample case. Although the
simulation in principle can be carried out using vastly different sets of units in each
component, compatibility is enhanced if common units are used. This is an area
where encouragement, via access to existing models, and mild punishment, via
compulsion to write additional declarations, are likely to stimulate uniformity. For
the sample HVAC circuit, a similar argument can be made concerning the choice
between temperature and enthalpy as an interaction variable.

A mechanism for increased compatibility in this sense is typing of variables. All
variable types to be used in component models are declared globally. A modeller
who is about to introduce a new model in the library will use already declared types
whenever possible.

11

The next step is to declare the groups of variable types that characterize interaction
within compatible families. Such a group is called a link type. Mass flow rate and
enthalpy together and in this order is an example of such a type. Examples of typing
syntax are found in Section 4.1.

The link concept also allows a user of a simulation environment to connect
submodels at the interface level rather than variable by variable. This means, for
example, that a fan outlet is connected with a cooling coil inlet as far as the user is
concerned; in the background however several variables may be involved in the
connection. Most current simulation environments, e.g. TRNSYS or HVACSIM+,
operate at the variable level; the link concept would in this respect simply be ignored
for these. The more important library structuring effect of link typing is still retained.

In link supporting environments, link types can be used to check whether a user is
making meaningful connections. There are cases, however, when a strictly imposed
typing concept is too restrictive. Controllers, for example, should be allowed to
interface with various types of links. This is dealt with in NMF by providing a
generic link type which can contain any number of any type of variables. An
environment can then check the individual variables in the connecting links for
matching types rather than the links themselves. A generic variable type is also
provided in order to allow for suppressed type checking on the variable level as well.
[MATTSSON 1988] discusses ways of constructing more elaborate type checking in
a modelling environment.

3.3 Property Inheritance

In the discussions preceding the Vancouver NMF proposal, one issue was whether
to allow inheritance of properties between models, i.e. to make NMF "object
oriented." The arguments that made us settle then for a flat model class concept
were all related to model simplicity, e.g.: more of "What You See Is What You Get"
if one has all of a model in one place; ease of library structuring and model look up;
no required user familiarity with OOP concepts etc.

However, modelling experience has led us to revise this view, and we are presently
working on a single-inheritance mechanism. The basic idea is to let models of the
same physical component with successively increasing level of complexity inherit
properties from less complicated ancestors, i.e. another dimension is added to the
compatible family genealogy. For example, a collector model with
massflow-enthalpy-relative_humidity links would inherit most of its properties from
a massflow-enthalpy collector.

The NMF version that is formally presented later on in this report does not
encompass the (few) additional concepts that are necessary for model inheritance.

A more detailed proposal for NMF model inheritance can be found in [SAHLIN
1995].

12

3.4 Hierarchical Decomposition

Another fundamental concept for structured modelling is hierarchical submodel
decomposition, i.e. one submodel within another in multiple levels. A composite
building model could then, e.g., be composed of several submodels, each one
representing a floor. A floor is in turn built up of several zone models, which are
built from wall models, and so on. One major advantage of this method is that it
enables incremental modelling and validation. A modeller can make sure that e.g. a
wall model behaves properly before it is used as part of a zone model, which then is
similarly validated and so on, incrementally approaching the building level. Another
advantage is that good graphical interfaces can be constructed for a corresponding
hierarchical presentation of a model, where a user first gets an overall view of the
system and then can zoom down for successively increased levels of detail.

Although most component models in NMF will be used as part of composite or
macro models on the environment level, the formatting of composite models
themselves, i.e. interconnection templates, is not encompassed by the present
version.

A detailed proposal regarding hierarchical models in NMF can also be found in
[SAHLIN 1995].

3.5 Model Validation

There is no way to stop someone from using a library component in a non-intended
way. The best thing one can do is to require extensive textual documentation to be
provided along with the library entry, including the background of the underlying
mathematical model.

The ambition of NMF is to make sure that the entered models make sense from a
mathematical perspective. Unfortunately, even this is quite a task. Existence of
solutions to nonlinear equations is a very difficult subject and no general and
practical theory exists. A model may work well over a particular parameter and
variable range and be ill posed over another. In the end, we are left with the
component modeller's ability to write robust models and to document them properly,
including their ranges of validity.

What is required for an approved NMF model is that a single problem - one
input-output designation along with an equation model - is provided, and that its
range of well posedness is specified. The well posedness range is specified in two
different ways: first, in terms of explicit limits on the involved parameters and
variables and, secondly, in terms of accompanying documentation. Responsibility for
the existence of solutions for other possible input-output designations must be left to
the targeted environments.

The most practical method for finding the range of well posedness of a model is
numerical testing. The idea is that the modeller finds some algorithm for solving the
designated problem, e.g. a direct iterative scheme or a general purpose
differential-algebraic integrator such as DASSL [BRENAN 1989] or even a

13

simulation environment, and then, by numerical experimentation, finds the range of
well posedness in parameter and variable space. As a minimum, it must be shown
that a solution exists in the intended operational regime.

It is recommended that the default values of variables and parameters in the model,
whenever this is meaningful, be chosen in such a way that they together satisfy the
equations. If this is done, a new model user can make a quick test of the model in his
or her environment: when IN variables and parameters are set to their defaults,
solving for the OUT variables should give their defaults.

Formally, for a general component model (from Section 3.1), call the vector of the
designated input set u and the corresponding output vector x yielding f(x, x’ , u, p),
where dim(f) = dim(x). Then the matrix (pencil):

λ df

dx

df

dx'
− ,

where λ is some scalar, must be non-singular for all but a finite number of λ:s and
this must, of course, be true for the entire parameter and variable working range of
the component [ERIKSSON 1992].

Some solvers take advantage of information about "undesirable inverses" of
individual equations. The basic idea here is that a scalar equation, e.g. h(x,y) = 0,
may be readily inverted to yield x = g1(y) where g1 is a well behaved function, but
the inverse y = g2(x) may be problematical. One possible problem is that the
function g2 may not be well behaved numerically. E.g. dg2/dx may become infinite
in the range of interest, or for environments that develop the inverses symbolically,
g2 may not be obtainable as a closed form expression, or even if obtainable it may
have poor numerical properties or be unwieldy.

4. NMF REFERENCE MANUAL

In this Section the elements of continuous NMF models are described. Model
examples are given in order to support the syntax presentation but the art of model
library building is not discussed. A formal syntax description is included in Appendix
1. In order to provide some overview we will start with an example of a simple
NMF model and then more carefully go through each element.

CONTINUOUS_MODEL tq_conduction

ABSTRACT "Linear conductance"

EQUATIONS

/* heat balance */
 0 = - Q + a_u * (T1 - T2) BAD_INVERSES ();

14

LINKS

/* type name variables... */
 TQ Terminal_1 T1, POS_IN Q ;
 TQ Terminal_2 T2, POS_OUT Q ;

VARIABLES

/* type name role [def [min max]] description */
 Temp T1 IN 0. ABS_ZERO BIG "1st temp"
 Temp T2 IN 0. ABS_ZERO BIG "2nd temp"
 HeatFlux Q OUT 0. -BIG BIG "flow from 1 to 2"

PARAMETERS

/* type name role [def [min max]] description */
 Area a S_P 1. SMALL BIG "cross sect area"
 HeatCondA u S_P 1. SMALL BIG "heat trans coeff"
 HeatCond a_u C_P 1. SMALL BIG "a * u"

PARAMETER_PROCESSING

 a_u := a * u;

END_MODEL

The heart of an NMF model is the EQUATIONS Section, where the governing
differential-algebraic equations are stated. In the example there is only one algebraic
equation and no ordinary differential equations, but in the general case there may be
several of each kind. Equations define relations between variables, time derivatives
of regular variables, parameters, and constants. All the standard F77 floating point
functions may be used and equations may also refer to user defined functions.

Any entity that may vary with time is called a variable. Variables in a model are
declared separately and must be of a globally, i.e. library common, variable type. For
example, the heat, Q, through the conductor is of the global type HeatFlux .

Parameters, on the other hand, remain constant throughout a simulation. They are
declared and globally typed similarly to variables. Variables and parameters use the
same global types called quantity types. Some parameters, a and u in the example,
do not necessarily appear in any equation. They are called easy access parameters
and are the ones that are actually specified by a user. A parameter processing section
is executed prior to simulation, in order to calculate remaining parameters, e.g., a_u

in the example.

Constants are common to all models and their values are permanently given by a
global declaration. In the example we find the constant ABS_ZERO and the machine
dependent constants BIG and SMALL.

Links define how a model may be connected with neighboring models. They usually
correspond to ports of a physical component, e.g. the terminals of a resistor or the
inlet and outlet of a fan. All variables that connect the model with neighboring

15

models must appear in the link declarations. There is no such things as global
variables, i.e. variables that are accessible to more than one model. Links are typed
globally in terms of the number and types of variables that appear in the link
declaration.

4.1 Global Declarations

As previously motivated, variable (quantity) types and groups of such types, link
types, are declared globally. The global declarations are then referenced from each
component model declaration. Constants are also declared globally within a library
of component models. Parameters share the quantity type declarations with
variables.

The type declaration section is placed at the head of an NMF file. An example of
some useful types are:

QUANTITY_TYPES

/* type name unit kind */

 Area "m2" CROSS
 Control "dimless" CROSS
 Density "kg/m3" CROSS
 Enthalpy "J/kg" CROSS
 Factor "dimless" CROSS
 HeatCap "J/(K)" CROSS
 HeatCapM "J/(kg K)" CROSS
 HeatCond "W/(K)" THRU
 HeatCondL "W/(m K)" THRU
 HeatCondA "W/(m2 K)" THRU
 HeatFlux "W" THRU
 HeatFlux_k "kW" THRU
 HumRatio "kg/kg" CROSS
 Length "m" CROSS
 Mass "kg" CROSS
 MassFlow "kg/s" THRU
 Pressure "Pa" CROSS
 RadiationA "W/m2" THRU
 Temp "Deg-C" CROSS
 Volume "m3" CROSS
 VolFlow "m3/s" THRU
 VolFlow_h "m3/h" THRU

/* CROSS = Potential, non-directional */
/* THRU = Flow, directional */

LINK_TYPES

/* type name variable types... */

 Q (HeatFlux)
 T (Temp)
 TQ (Temp, HeatFlux)

 M (MassFlow)
 MT (MassFlow, Temp)

 PM (Pressure, MassFlow)

16

 PMT (Pressure, MassFlow, Temp)

 MoistAir (Pressure, MassFlow, Temp, HumRatio)
 BidirFlow (Pressure, MassFlow, Enthalpy, HeatFlux)
 HeatSun (Temp, HeatFlux, RadiationA, RadiationA)

 ControlLink (Control)
 ControlLimit (Control, Control)

CONSTANTS

/* name value unit */

 ABS_ZERO -273.16 "Deg-C" /* absolute zero temp */
 BOLTZ 5.67E-8 "W/(m2 K4)" /* Stefan Boltz const */
 CP_AIR 1006. "J/(kg K)" /* air specific heat */
 CP_VAP 1805. "J/(kg K)" /* watervapor spec heat */
 CP_WAT 4187. "J/(kg K)" /* water specific heat */
 CV_AIR 720. "J/(kg K)" /* air specific heat */
 G 9.81 "m/s2" /* gravity acc */
 GASCON 287. "" /* general gas const */
 HF_VAP 2.501E6 "J/kg" /* water vaporizat heat */
 LAMBDA_AIR 0.0243 "W/(m K)" /* air thermal conduc */
 LAMBDA_WAT 0.554 "W/(m K)" /* water thermal conduc */
 P_ATM_0 1.013E5 "Pa" /* standard air press */
 PI 3.1415927 "dimless" /* the pi number */
 PRANDTL_AIR 0.71 "dimless" /* air Prantl number */
 RHO_AIR 1.2 "kg/m3" /* air density */
 RHO_WAT 1000. "kg/m3" /* water density */
 VISC_WAT 1.E-3 "kg/(m s)" /* water dynamic visc */

The first two fields of a quantity type declaration need no explanation, but "kind "
may not be familiar. (kind is not relevant when quantity types are used for
parameters.) All variables can be categorized as being of, either
direction-dependent flow type (e.g. mass flow, heat flow, electrical current, torque
and force), or direction-independent potential type (e.g. temperature, pressure,
enthalpy, voltage and position). The physics of flow-type variables says that they
should sum to zero when two such variables are connected together. They are
traditionally called THRU variables and will be called so here as well. Potential-type
variables, on the other hand, are set equal to each other when connected. They are
called CROSS variables.

Functions and Subroutines can either be declared globally, for access in several
models, or locally within a model, for exclusive use within that model. Global and
local function declarations are syntactically identical. This is discussed further in
Sections 4.2.6-7.

4.2 Continuous Model Elements

The elements of continuous models will be introduced incrementally. The reader is
advised to study a collection of NMF models from a familiar field of application in
parallel. Some models for thermal modelling of buildings are collected in Appendix 2
for reference.

17

4.2.1 Equations

As previously motivated, the internal behavior of continuous models is described by
a system of scalar equations, each of which is written

 <expression> = <expression>,

where an expression may be a single variable, a first order time derivative, a
parameter, a number, or some mathematical combination of these. The aim is to
keep the syntax as "natural" as possible. Expressions may also include references to
separately defined functions written in a regular programming language.

One or more ordinary differential and/or algebraic equations may be stated and their
individual order is of no formal consequence to the solution procedure. It is
important to understand that NMF only states a mathematical model. It does not
suggest any procedure for solving the equations. This is handled automatically by the
target environment in some cases (e.g. IDA and SPARK) or by a combination of
environment and translator software in others (e.g. TRNSYS and HVACSIM+.) An
example of a legal model is

EQUATIONS

 X1' = f1(X1,X2,X3);
 0 = g1(X1,X2,X3);
 f2(X1,X2,X3) = X3*X2';

where X:s are regular variables, X' :s time derivatives, and f :s and g:s user defined
functions.

Case has no formal meaning in NMF, but can be used to enhance legibility of model
definitions. Conventionally, capital letters are used for keywords and constants,
while parameters are written in lower case letters, and variables in lower case but
with the first letter in uppercase. Time derivatives are marked by an apostrophe
immediately following the variable name, before indices for indexed variables.

Piecewise defined equations are handled by the conditional expression, for example:

/* required supply air mass flow rate */
 M = IF Temp >= tmax THEN
 mmin
 ELSE_IF Temp <= tmin THEN
 mmax
 ELSE
 ((Temp - tmin)*mmin + (tmax - Temp)*mmax)/(tmax - tmin)
 END_IF BAD_INVERSES (Temp);

Dependencies like these can of course be hidden in external functions. It does
however often make the model more legible if they are declared explicitly. The
optional list of BAD_INVERSES has been tagged on to the sample equation in order to
signal the danger of trying to solve for Temp. One can chose to instead specify
GOOD_INVERSES, if this is more convenient.

18

The number of equations in a continuous model may also be flexible to a certain
extent, thus allowing e.g. simple finite difference models. The special constructs for
indexed variables are, FOR for stating several scalar equations, and SUM for sums over
indexed expressions, for example:

 FOR i = 2, (n-1)
 p*T'[i] = T[i-1] - 2*T[i] + T[i+1] + SUM j = 1, m Q[i,j] END_SUM;
 END_FOR

where i and j are counter variables which are not declared separately, and n and m
are model parameters. These form a special class of parameters for defining index
ranges; they are further explained in Section 4.2.5. The complete syntax of FOR and
SUM is located in Appendix 1. There are also some examples of usage in Appendix 2.

The variables Time and Timestep , for global time and integration timestep in
seconds, are an exception to the principle of no global variables. They are available
in each model without separate declaration.

Time in NMF is always measured in seconds. Equations are then automatically
converted to suit the time unit of the target environment.

4.2.2 Assignment modelling

One purpose of NMF is to bring forth the advantages of equation based modelling in
contrast to traditional assignment modelling with fixed input output structure. This
has been discussed at some length in Section 3.1. However, there are some cases
when it is convenient and even necessary to combine assignments with equations.

One instance of convenience is when a set of equations contain the same expression
in several places, e.g.

 g1(f1(X1, X2, X3)) = X1;
g2(f1(X1, X2, X3)) = X2;

If the the common expression is costly to evaluate, one would prefer to evaluate it
only once and store the result in a help variable,

 Help := f1(X1, X2, X3);
 g1(Help) = X1;
 g2(Help) = X2;

One might argue that cases like these could be spotted by a clever translator and the
help variable could be introduced automatically in the translation process. This is
certainly within reach of compiler technology of today, but we have, nevertheless,
chosen to put the burden on the modeller rather than the translator. This is done in
order to make translator writing relatively straightforward, knowing that the
emergence of translators within reasonable time is crucial to any standardization
attempt.

19

Help variables (declared LOC) are also used to carry information from subroutine
calls to equation evaluation, e.g.

 CALL sub1 (X1, X2, Help1, Help2);
 g1(Help1) = X1;
 g2(Help2) = X2;

A case when pure equation modelling is insufficient - and assignments are necessary
- is when a model has several distinct states or modes, i.e. the model must remember
from one evaluation to the next what state it is in. The typical example is a
thermostat, which must remember its previous output state in the dead band,

 State := IF T > t_high THEN 0
 ELSE_IF T < t_low THEN 1
 ELSE State
 END_IF;

where T is a variable in the usual sense, t_high and t_low are parameters. State is
an assigned state which keeps its value from one timestep to the next. The formal
difference between an assigned state and a pure help variable is that a help variable is
assigned to before it is referred to, while the opposite is true for an assigned state.

Assigned states (declared A_S) translate directly to variables that are put in the S
common area in TRNSYS or SAVED array in HVACSIM+. The updating of stored
variables is complicated for users of these environments, since only the value of the
last iteration of a timestep is to be retained. An NMF translator would introduce the
updating code automatically in a translated model for TRNSYS and HVACSIM+. In
IDA, assigned states are updated locally by the component model in each iteration,
but reset again globally prior to the next iteration, to the value they received at the
last iteration of the previous timestep.

Modelling with assigned states is usually associated with discontinuous models, like
a thermostat. The discussion about numerical treatment of these models leads quite
far and it has been treated in a separate work [ERIKSSON 1992]. Here, we will be
concentrating on the syntax and semantics of model expression only.

Assignments may be freely mixed with equations. An assigned state must be
assigned to once, it may not be assigned to repeatedly. Help variables may or may
not be assigned to during the execution of a model, but they may not be assigned to
repeatedly. Help variables are of course only meaningful if assigned to before the
equations where they are referred to.

No effort has been made to provide a complete set of programming constructs for
assigned variables. It is important to recognize that they are merely intended to
complement equations and not to replace them. Aside from the assignment statement
itself, an IF-THEN-ELSE construct is provided and the previously discussed FOR

statement may also be used. Some examples will illustrate the rules.

Throughout the examples, State , Help and Help1 are assigned variables; X, X1 and
Tot are regular variables:

20

 IF <condition> THEN
 Help := 2;
 Help1 := 1;
 ELSE_IF <condition> THEN
 Help := 3;
 Help1 := 4;
 END_IF

 <equations>

- OK

. .

 FOR i = 1, n
 State[i] := X[i]*X1[i];
 END_FOR

- OK

. .

 FOR i = 1, n

 Help := f(i, X);
 X'[i] = Help;
 X1'[i] = Help;

 END_FOR

- NOT PERMITTED, Help is assigned repeatedly

. .

 FOR i = 1, n

 Help1[i] := f(i, X);
 X'[i] = Help1[i];
 X1'[i] = Help1[i];

 END_FOR

 0 = Tot - SUM j = 1,n Help1[j] END_SUM

- OK

4.2.3 Links

All variables that connect the model with neighboring models must appear in a link
declaration. The same variable may appear in more than one link. Links may also
contain variables that do not appear in any equation, e.g. pressure in a node where
no pressure drops are calculated (cf. example 7 in Appendix 2.)

21

A link must be, either of a globally declared link type, or GENERIC. Links that are
declared GENERIC may contain any number of variables of any type. Such a link may
be connected with a neighboring link of any type with the same number of slots and
where each connected pair of variables have matching types, i.e. types are identical
or one of them is GENERIC.

Each THRU variable in the link is specified in terms of its direction of definition, i.e.
the variable name is preceded by either POS_IN or POS_OUT.

Link variables are, in the present NMF version, limited to scalars. This restriction is
likely to be relaxed if, in the future, NMF is extended further in the direction of
partial differential equations.

Assigned variables may not appear in links of continuous models. This restriction is
made in order to prevent unintended use of assigned variables.

Links may be indexed, thus allowing a flexible number of ports to a model (cf.
example 1 in Appendix 2.) Variables in an indexed link may be vector but not
matrix elements. The element index must be the counter variable alone, not some
function of it, nor a constant number or a parameter. The limits in the FOR loop
must be 1 and the same model parameter that dimensions the variable vectors in
the link. This restriction might be relaxed in the future, hence the present link
statement construction.

 LINKS

/* type name variables */
 FOR i = 1, n
 PMT port[i] Pressure, POS_IN MassFlow[i], Temp[i]
 END_FOR

- OK, if n dimensions Massflow and Temp in their declarations

. .

 FOR i = 1, n
 PMT port[i] Pressure, POS_IN MassFlow[i], Temp[i,i]
 END_FOR

- NOT PERMITTED, Temp is a matrix

. .

 FOR i = 1, n
 PMT inlet[i] Pressure, POS_IN MassFlow[i], Temp[1]
 END_FOR

- NOT PERMITTED, Temp’s index is a number

. .

 FOR i = 1, n

22

 PMT outlet[i] Pressure, POS_IN MassFlow[i], Temp[n]
 END_FOR

- NOT PERMITTED, Temp’s index is a parameter

4.2.4 Variables

Variables are separated in two main groups, regular and assigned, with each group
further subdivided in two. Regular variables receive their values in the global
equation solving procedure. Assigned variables receive theirs locally within a
model by assignment. Assigned variables can be either help variables (LOC) or
assigned states (A_S). The difference between the two has been discussed in
Section 4.2.2. Regular variables are separated into given (IN) and calculated (OUT).
As discussed in Sections 3.1 and 3.4, the modeller is required to specify one well
posed problem for each model, i.e. one of all possible partitions into given and
calculated variables. The number of OUT variables must always be equal to the
number of equations in a model.

Each continuous model variable is declared in seven aspects:

1. Type. Each type that is referred to must be either globally declared or GENERIC.
GENERIC variables that appear in links are treated the same way as CROSS
variables, i.e. they are connected without any sign change to account for
direction.

2. Identifier. For vector or matrix variables upper limits of index ranges are given
in terms of model parameters within square brackets. The lower index is 1.
hereis

3. Role. As mentioned earlier variables are cast to play one of four roles: IN, OUT,
LOC, or A_S.

4. Default value. Most environments will provide defaults for initial values (of
dynamic variables and assigned states) and for initial value guesses (for
algebraic variables). The default value is redundant for LOC variables. It
may be omitted for all variables. If left out Default defaults to 0. Globally
declared constants may be used for default values and for min and max.

5 & 6. Minimum and maximum limits of the allowed range. Each variable is
optionally given a range, within which the model is valid. If left out, they
default to the global constants -BIG and BIG. SMALL and BIG are global
machine dependent constants for small and big floating point numbers.

7. Description. Explanatory text string within quotation marks, no more than 80
characters excluding carriage returns, tabs and additional blanks, all of
which may be filtered away by the target environment.

23

Variables that only appear in the links (interfaces) of a model - i.e. which do not
appear in any of the equations - are also declared. For these variables, role should be
set to IN (cf. example 7 in Appendix 2). Examples of variable declarations follow:

VARIABLES

/* type name role [def [min max]] description */

GENERIC Bf A_S 0.1 SMALL .999 "Coil bypass factor
 according to Carrier
 (dimless)"
GENERIC C_r_r LOC 0.28 SMALL BIG "Capacity rate ratio
 (dimless)"
HumRatio G_i IN 0.2 0 1 "Inlet air humidity
 ratio"
Pressure P_o OUT 10 "Outlet pressure"
Temp T_ao OUT 10 ABS_ZERO 100 "Outlet air dry bulb
 temperature"
HeatFlux Q[n_srf] OUT "Heat flowing into
 each surface"
Temp T[n_x, n_y]IN 20 ABS_ZERO 30 "Slab temp field"
RadiationA R[n_srf,n_srf]
 LOC "Surface radiation
 exchange"

4.2.5 Parameters and Model Parameters

Parameters are used to adapt a generally formulated equation model to the behavior
of an actual device. They are declared under two separate headings:
MODEL_PARAMETERS and PARAMETERS. The former allow a user to adapt a model
structurally. They are integers that dimension arrays and matrices but may also be
used as regular parameters.

Parameters use the same global quantity types as variables. Their declaration is
identical to a variable declaration, except for the Role field which takes other values.
For PARAMETERS the possible roles are S_P and C_P, for MODEL_PARAMETERS they
are SMP and CMP. S_P and SMP are used for parameters specified by the user, while
C_P and CMP are reserved for parameters calculated within the model (see next
section). def , min and max may be left out in the same way as for variables (either all
three or min and max). For PARAMETERS they default to 0, -BIG and BIG, while for
MODEL_PARAMETERS they are set to 1, 1 and BIGINT if left out. PARAMETERS may be
vectors or matrices but MODEL_PARAMETERS are always scalar integers. Examples:

MODEL_PARAMETERS

/* type name role [def [min max]] description */

 INT n_srf CMP 4 2 BIGINT "Number of surfaces"

 INT n_cir SMP 3 0 BIGINT "Number of parallel
 water circuits"

PARAMETERS

/* type name role [def [min max]] description */

24

 Length d_o_tube S_P .02 SMALL BIG "Tube outside
 diameter"
 GENERIC fl_res C_P .3 SMALL BIG "Flow resistance param
 on air side(Pa*s2/m6)"
 HeatFlux_k q_s[n_srf] S_P "Heat sources or sinks

 at each surface"

4.2.6 Parameter Processing

Except for globally defined constants, all the various named coefficients of the
equation model are declared as parameters, but in addition to this, extra parameters
may be declared in a model. Frequently, the mathematical characterization of a
model, i.e. the parameters that appear in the equation model are quite different from
those that an engineer spontaneously would choose to specify the corresponding
physical device. For example, a zone model, which accounts for long wave radiation
between surfaces, would have view factors (in some form) appearing in the equation
model. However, a user of such a model would normally not prefer to specify these
directly but rather the sizes, orientations, and so on of the surfaces themselves.

The mapping of user specified parameters or, more informally, easy access
parameters onto parameters used in equation models is done by an algorithm which
is stated under the heading PARAMETER_PROCESSING. The statement repertoire and
other rules are the same as for assigned variables in the EQUATION section, e.g. each
identifier may only be assigned to once. Model parameters may also be computed,
but only as monotonically increasing functions of other model parameters.
Parameters and model parameters that receive values in this section must always be
declared with role C_P and CMP respectively.

PARAMETER_PROCESSING

n_surf := n_wind + n_wall;

CALL par_proc(n_surf, surf_height, surf_width, surf_x, surf_y, surf_z,
 surf_slope, surf_orient, surf_area, rad_coeff);

4.2.7 Functions

Separate functions or subroutines can be called in the EQUATIONS and
PARAMETER_PROCESSING sections. They may be written in FORTRAN 77 or C, or
alternatively defined with NMF statements only.

Functions may be declared either globally or locally within a model. Globally
declared functions can be called from any model in the library. Global and local
function declarations are identical, e.g.

FUNCTION

/* routine for parameter processing */

 VOID par_proc(n, h, w, x, y, z, slope, orient, area, r_coeff)

25

LANGUAGE F77

INPUT
 INT n;
 FLOAT h[n], w[n], x[n], y[n], z[n], slope[n], orient[n];

OUTPUT
 FLOAT area[n], r_coeff[n];

CODE
 SUBROUTINE PAR$P(...
C The Fortran ...
 .
 .
 .
 END
END_CODE

END_FUNCTION

Most modern implementations of high level programming languages allow calls to
precompiled routines from other languages, usually Fortran 77, C and Pascal. An
NMF translator will, when a FUNCTION declaration is encountered, set up the
necessary declarations for a foreign function call in the target environment and
invoke the proper compiler.

4.3 Special Functions

A number of so called special functions for interaction between models and the
simulation environment are defined as part of NMF. Some of these functions will be
implemented differently in different environments, e.g. due to varying numerical
strategies, and they may even in some cases be dummies.

4.3.1 Error Subroutine

A global subroutine nmf_error can be called from a model to signal an error, print
selected variables, and halt execution, e.g.

CALL nmf_error("error message", variable_x, variable_y);

The NMF translator will check the variable types and set up a proper call in the local
environment. A suitable level of information could for instance be to identify each
variable by component instance, component type and variable name. Expressions of
variables are not permitted as arguments.

4.3.2 Event functions

Implicit solvers with variable timestep can, if the solution changes predictably, take
very long steps. If a discontinuity is encountered during a timestep, special action

26

must be taken to signal the event to the solver, which then can use the signal to
locate the discontinuity in time and select a proper timestep. Since most modern
DAE solvers belong to this category, it is appropriate for the NMF to encompass
such a signaling system, although, strictly speaking, the mechanism is not part of the
mathematics of a model.

For solvers that lack the ability to locate events in time, dummy versions of the event
functions will be provided in the form of global NMF functions.

Three different functions are involved: event , eventn , and eventp , which trigger
events when an input signal passes through zero from - respectively - both
directions, positive to negative, and negative to positive.

eventx(event_var, event_expr)

event_expr provides the monitored signal and event_var is a (declared) assigned
state variable which provides storage of the value of event_expr at the last iteration
of the previous timestep. The event functions do three things

1. if appropriate, signal zero crossing to the solver
2. set event_var := event_expr

3. return the value of event_expr as function value.

A thermostat with event calls can e.g. be formulated (from example 3 of Appendix
2)

EQUATIONS

 Out_signal = Old_signal
 BAD_INVERSES () ;

 Top := eventp(Hi, T - tmax) ;
 Bottom := eventn(Lo, T - tmin) ;
 Old_signal := IF Top > 0 THEN
 0
 ELSE_IF Bottom < 0 THEN
 1
 ELSE
 Old_signal
 END_IF ;

Event calls should always be located in assignments of assigned states. This enables
the solver to "see" continuous equations at all times, since assigned states retain their
values from the last iteration of the previous timestep and oscillations from one state
to another is avoided during iterations. If an event has been signaled at the last
iteration of a tentative timestep, a solver can discard the timestep and try to locate
the event in time.

4.3.3 Model linearization
Linearization of nonlinear models can be useful means to support initial value
calculation, quite independent of application field. There is reason to make this
linearization an explicit feature of the NMF models. The suggested solution uses a

27

Boolean system function 'LINEARIZE ' which can be called in the model equations to
select between linear and nonlinear model alternatives. Translators for various
simulation environments may implement different interpretations, the simplest being
to ignore the construction by implementing a dummy LINEARIZE function. A
reasonable strategy, which has been used in IDA Solver, is to plan for one or more
preparatory stages at the beginning of each initial value calculation, Typically, there
is only one extra stage, during which some components may choose to linearize their
models. The stage information is requested by the component via a call
LINEARIZE(n) , where n is an integer constant. The detailed definition of the
function is:

LINEARIZE is true if the stage number of the solver is less than or equal to n.

The solver will let the stage number vary 1,2,... until no call of LINEARIZE gets
answer true.

An example, extracted from a model for a bidirectional leak:

/* power law mass flow equation */
 M = IF LINEARIZE(1) THEN c * Dp
 ELSE_IF Dp > 0 THEN c * Dp**k
 ELSE -c * (-Dp)**k
 END_IF

4.3.4 Delays

Models with delay are often used in practice, but they frequently cause numerical
difficulties and very little theory on the subject exists. Nevertheless, due to the great
practical advantage, a delay function should be provided in the NMF framework and
the formulation and testing of such a function is planned.

5. ACKNOWLEDGEMENTS

The basic ideas behind NMF came forth during a series of discussions at the Swedish
Institute of Applied Mathematics and were first presented by Ed Sowell at the
Building Simulation '89 conference in Vancouver, Canada [SAHLIN 1989]. Lars
Eriksson, Jon Dranger, Pavel Grozman, Harald Hermansson, Magnus Lindgren,
Kjell Kolsaker, Francis Lorenz, Jean-Michel Nataf, Roger Pelletret, and many others
have participated in those, and in ensuing, discussions. A special thanks also to Wille
Nordqvist for the tedious work of compiling error reports and various opinions into
the present version of the report.

6. REFERENCES

ANDERSSON 1990 M. Andersson "An Object-Oriented Language for Model
Representation," Licentiate Thesis, Dept. of Automatic Control, LIT , Box 118, 221
00 Lund, Sweden, May 1990, CODEN:LUTFD2/(TFRT-3208)/1-102/(1990)

28

BRING 1993 A. Bring, P. Sahlin "Modelling Air Flows and Buildings with NMF
and IDA," Conference proc. Building Simulation'93, IBPSA, Adelaide, Australia,
Aug. 1993.

BRENAN 1989 K.E. Brenan, S.L. Campbell, and L.R. Petzold "Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equations,"
North-Holland, 1989

CLARKE 1984 J.A. Clarke, L. Laret "Explanation of the Data Processor
Proforma," ABACUS, Strathclyde, and Laboratoire de Physique du Batiment,
Liege, working document, Dec., 1984

DUBOIS 1988 A.M. Dubois "MODEL-BASED COMPUTER AIDED
MODELLING: the new perspectives for building energy simulation,"
communication from CSTB, B.P. 21, 06561 VALBONNE Cedex, France

ELMQUIST 1978 Elmquist, H. "A Structured Model Language for Large
Continuous Systems", Phd thesis, Lund Institute of Technology

ELMQVIST 1986 H. Elmqvist "LICS: Language for Implementation of Control
Systems," Dept. of Automatic Control, LIT , Box 118, 221 00 Lund, Sweden

ERIKSSON 1992 L.O. Eriksson, A. Bring, G. Söderlind "Numerical Methods for
the Simulation of modular Dynamical Systems," Research Report 1992:2, Swedish
Institute of Applied Mathematics, Chalmers Teknikpark, 412 88 Gothenburg, Feb.
1992

KOLSAKER 1990 K. Kolsaker "Dynamisk Simulering med IDA - Et praktisk
verktöy for bygningssimulering med modellbibliotek for fjernvarmeinstallasjoner, del
1 och 2" SINTEF Varmeteknikk,7034 Trondheim, Norway, July 90, ISBN
82-585-6091-7

KOLSAKER 1991 K. Kolsaker "An NMF-Based Component Library for Fire
Simulation," Conference proc. Building Simulation'91, IBPSA, Nice, France, Aug.
1991

KOLSAKER 1993 K. Kolsaker "Recent Progress in Fire Simulation using NMF
and Automatic Translation to IDA," Conference proc. Building Simulation'93,
IBPSA, Adelaide, Australia, Aug. 1993

LEBRUN 1988 J. Lebrun, G. Liebecq "IEA Annex 10 System Simulation -
Synthesis Report," University of Liege, Oct 1988, AN10 881020-RF

MATTSSON 1988 S.E. Mattsson "On Model Structuring Concepts," Presented
at 4th IFAC Symposium on Computer Aided Design in Control Systems (CADCS),
Beijing, China

29

NATAF 1990 J.-M. Nataf, E.F. Sowell "Radiant Transfer Due to Lighting: An
Example of Symbolic Model Generation for the Simulation Problem Analysis
Kernel," Proc. Modeling and Simulation on Microcomputers, Society for Computer
Simulation, San Diego, CA, Jan. 1990

RONGERE 1992 F.-X. Rongere, W. Ranval "A Modelling Method for Systems
in Building Energy Simulation: MEMPHIS," Electricite de France, April 1992, HE
12 W 3340

SAHLIN 1989 P. Sahlin, E. Sowell "A Neutral Format for Building Simulation
Models," Conference proc. Building Simulation'89, IBPSA, Vancouver, Can, June
1989

SAHLIN 1991 P. Sahlin, A. Bring "IDA Solver - a Tool for Building and Energy
Systems Simulation," Conference proc. Building Simulation'91, IBPSA, Nice,
France, Aug. 1991

SAHLIN 1991b P. Sahlin "IDA - a Modelling and Simulation Environment for
Building Applications," Research Report 1991:2, Swedish Institute of Applied
Mathematics, Chalmers Teknikpark, 412 88 Gothenburg, Dec. 1991

SAHLIN 1995 P. Sahlin, A. Bring, K. Kolsaker “Future Trends of the Neutral
Model Format," Conference proc. Building Simulation'95, IBPSA, Madison, WI,
USA, Aug. 1995 (available at ftp://urd.ce.kth.se/pub/reports/knthbs95.rtf)

30

7. APPENDIX 1 SYNTAX DEFINITION FOR NMF

Version 3.02 draft, November 1995

1 Syntax notation:

<...> Syntagm
'x..' Represents literal x..
:= Define operator
[...] Optional construct
{...} Repeat one or more times
{...$...} Repeat to $ or exit, {a$b} is equivalent to a[{ba}]
(...|...) Alternative definitions

<apostrophe> denotes a literal apostrophe.
<newline> denotes a line break.
<tab> denotes a tabulation.

2 Syntax

<specification> :=
<foundation> { (<model_decl> | <function_decl>) }

2.1 Global declarations
<foundation> :=

'QUANTITY_TYPES' { <quantity_type_decl> }
'LINK_TYPES' { <link_type_decl> }
['CONSTANTS' { <const_decl> }]

<quantity_type_decl> := <quantity_type_name> <unit> <kind>
<link_type_decl> := <link_type_name> '(' { <quantity_type_spec> $ ',' } ')'
<quantity_type_spec> := (<quantity_type_name> | 'GENERIC')
<const_decl> := <const_name> <value> <unit>
<unit> := <string>
<kind> := ('CROSS' | 'THRU')

2.2 Component models
<model_decl> := (<continuous_decl> | <algorithmic_decl>)
<algorithmic_decl> := To be defined
<continuous_decl> :=

'CONTINUOUS_MODEL' <model_name>
'ABSTRACT' <string>
'EQUATIONS' <statements>
'LINKS' <link_declarations>
'VARIABLES' { <var_decl> }
['MODEL_PARAMETERS' { <model_par_decl> }]
['PARAMETERS' { <par_decl> }]
['PARAMETER_PROCESSING' <statements>]
[{ <function_decl> }]
'END_MODEL' [<model_name>]

31

2.3 Equations and assignments
<statements> :=

{ <statement> $ ';' } [';']
<statement> :=

('FOR' <count_spec> <statements> 'END_FOR'
| 'IF' <condition> THEN [<statements>]

[{ 'ELSE_IF' <condition> 'THEN' [<statements>] }]
['ELSE' [<statements>]]

'END_IF'
| <simple_statement>
)

<simple_statement> := (<equation> | <assignment>)

2.3.1 Equations
<equation> := <expression> '=' <expression> [<inverse_decl>]
<inverse_decl> :=

('GOOD_INVERSES' '(' { <var_name> $ ',' } ')'
| 'BAD_INVERSES' '(' [{ <var_name> $ ',' }] ')'
)

2.3.2 Assignments
<assignment> :=

(<single_id_expression> ':=' <expression>
| <procedure_call>
)

<single_id_expression> :=
(<var_name> [<subscripts>]
| <par_name> [<subscripts>]
| <model_par_name>
)

<procedure_call> :=
'CALL' <function_name> '(' [{ (<string>|<expression>) $ ',' }] ')'

2.4 Expressions

<expression> := [<sign>] <term> [{ <sign> <term> }]
<term> := <factor> [{ ('*' | '/') <factor> }]
<factor> := <simple_expression> ['**' <simple_expression>]
<simple_expression> :=

(<unsigned_constant>
| <variable_expression>
| <parameter_expression>
| <function_expression>
| <sum_expression>
| <cond_expression>
| '(' <expression> ')'
)

<variable_expression> :=
<var_name> [<derivative>] [<subscripts>]

32

<derivative> := <apostrophe>
<subscripts> := '[' { <subscript_expression> $ ',' } ']'
<parameter_expression> :=

(<par_name> [<subscripts>]
| <counter_name>
| <model_par_name>
)

<function_expression> :=
<function_name> '(' [{ (<string> | <expression>) $ ',' }] ')'

<sum_expression> := 'SUM' <count_spec> <expression> 'END_SUM'
<count_spec> :=

<counter_name> '='
<subscr_simple_expr> ',' <subscr_simple_expr>

2.4.1 Subscript expressions
<subscript_expression> :=

[<sign>] <subscr_term> [{ <sign> <subscr_term> }]
<subscr_term> :=

<subscr_factor> [{ ('*' | '/') <subscr_factor> }]
<subscr_factor> :=

<subscr_simple_expr> ['**' <subscr_simple_expr>]
<subscr_simple_expr> :=

(<unsigned_constant>
| <parameter_expression>
| '(' <subscript_expression> ')'
)

2.4.2 Conditional expressions
<cond_expression> :=

'IF' <condition> 'THEN' <expression>
[{ 'ELSE_IF' <condition> 'THEN' <expression> }]
'ELSE' <expression>

'END_IF'
<condition> := <boolean_term> [{ 'OR' <boolean_term> }]
<boolean_term> :=

<boolean_factor> [{ 'AND' <boolean_factor> }]
<boolean_factor> :=

(<boolean_relation>
| 'NOT' <boolean_factor>
| '(' <condition> ')'
| <function_expression>
)

<boolean_relation > :=
(<expression > { ('==' | '<=' | '<') <expression> }
| <expression > { ('==' | '>=' | '>') <expression> }
| <expression> '!= ' <expression>
)

2.5 Link declarations
<link_declarations> := { <link_declaration> $ ';' } [';']

33

<link_declaration> :=
('FOR' <link_count_spec> <indexed_link_declarations>
'END_FOR'
| <simple_link_declaration>
)

<link_count_spec> :=
<counter_name> '=' '1' ',' <model_par_name>

<indexed _link_declaration> :=
(<link_type_name> | 'GENERIC')
<link_name> ['[' <counter_name> ']']
{ <link_var_spec> $ ',' }

<simple_link_declaration> :=
(<link_type_name> | 'GENERIC')
<link_name> { <link_var_spec> $ ',' }

<link_var_spec> :=
[<pos_direction>] <var_name> ['[' <counter_name> ']']

<pos_direction> := ('POS_IN' | 'POS_OUT')

2.6 Variable declarations
<var_decl> :=

<quantity_type_spec> <var_name_spec> <var_role>
[<default_val> [<min_val> <max_val>]] <description>

<var_name_spec> := <var_name> [<field_decl>]
<field_decl> := '[' { <field_size> $ ',' } ']'
<field_size>:= <model_par_name>
<var_role> := ('IN' | 'OUT' | 'A_S' | 'LOC')
<default_val> := <value>
<min_val> := (<value> | <machine_limit>)
<max_val> := (<value> | <machine_limit>)
<description> := <string>

2.7 Model parameter declarations
<model_par_decl> :=

'INT' <model_par_name> <m_par_role>
[<model_def_val> [<model_min_val> <model_max_val>]]
<description>

<model_def_val> := <unsigned_integer>
<m_par_role> := ('SMP' | 'CMP')
<model_min_val> := <unsigned_integer>
<model_max_val> := ('BIGINT' | <unsigned_integer>)

2.8 Parameter declarations
<par_decl> :=

<quantitiy_type_spec> <par_name_spec> <par_role>
[<default_val> [<min_val> <max_val>]] <description>

<par_name_spec> := <par_name> [<field_decl>]
<par_role> := ('S_P' | 'C_P')

2.9 Function declarations

34

<function_decl> :=
'FUNCTION' <type_spec> <function_name> '(' <formal_list> ')'
'LANGUAGE' <language>
['INPUT' { <formal_decl> }]
['OUTPUT' { <formal_decl> }]
<body>
'END_FUNCTION'

<type_spec> := ('INT' | 'FLOAT' | 'BOOLEAN' | 'VOID')
<formal_list> := [{ <formal_name> $ ',' }]
<language> := ('NMF' | 'F77' | 'C')
<formal_decl> :=

('INT' <formal_var_list> ';'
| 'FLOAT' <formal_var_list> ';'
| 'STRING' <formal_var_list> ';'
)

<formal_var_list> := { <formal_var_spec> $ ', ' }
<formal_var_spec> := <formal_name> [<formal_field_decl>]
<formal_field_decl> := '[' { <formal_field_size> $ ',' } ']'
<formal_field_size> := <formal_name>
<body> := ('EXTERNAL' <external_name> '(' <formal_list> ')'

| 'CODE' <code> 'END_CODE'
)

<code> := ({ <body_statement> $ ';' } [';']
| Code according to the specified non-NMF langauge
)

<body_statement> := (<statement> | 'RETURN' <expression>)

2.10 Low level constructs
2.10.1 Numbers
<value> := (<integer> | <real> | [<sign>] <const_name>)
<machine_limit> := [<sign>] ('BIG' | 'SMALL' | 'BIGINT')
<unsigned_constant> :=

(<unsigned_integer> | <unsigned_real> | <const_name>)
<integer> := [<sign>] <unsigned_integer>
<unsigned_integer> := { <digit> }
<real> := [<sign>] <unsigned_real>
<unsigned_real> :=

(<fraction> [<exponent>]
| <unsigned_integer> <exponent>
)

<fraction> :=
(<unsigned_integer> '.' [<unsigned_integer>]
| '.' <unsigned_integer>
)

<exponent> := 'E' <integer>
<sign> := ('+' | '-')

2.10.2 Names
<quantity_type_name> := <ident>
<link_type_name> := <ident>

35

<const_name> := <ident>
<counter_name> := <ident>
<link_name> := <ident>
<var_name> := <ident>
<model_name> := <ident>
<model_par_name> : <ident>
<par_name> := <ident>
<function_name> := <ident>
<formal_name> := <ident >
<external_name> := <ident>
<ident> := <letter> [{ <id_char> }]

2.10.3 Text strings
<string> := '"' [{ <char> }] '"'

2.10.4 Characters
<id_char> := (<letter> | <digit> | '_' | '$')
<letter> :=

('A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J'
| 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T'
| 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' |
| 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j'
| 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't'
| 'u' | 'v' | 'w' | 'x' | 'y' | 'z'
)

<digit> :=
('1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | '0')

<char> := (<letter> | <digit> | <special_char>)
<special_char> :=

('!' | '"' | '#' | '$' | '%' | '&'
| '(' | ')' | '*' | '+' | ',' | '-' | '.' | '/'
| ':' | ';' | '<' | '=' | '>' | '?'
| '@' | '[' | '\' | ']' | '^' | '_'
| '`' | '{' | '|' | '}' | '~' | ' '
| <apostrophe> | <newline> | <tab>
)

36

3 Semantic notes

The formal syntax above is permissive; it does not describe in detail the intended
use of the NMF. It is reasonable to add some semantic rules to clarify the
intentions.

Some of the rules given below could have been formulated in syntax, but the result
would have been circumstantial and less legible.

1 All names used to identify quantities such as variables, parameters, etc.,
must be declared globally or locally.

2 Global names must be unique across all global declarations; i.e. a quantity
type can not have the same name as a link type.

3 Names declared locally within a model must be unique across all local
declarations, e.g. a link can not have the same name as a variable or parameter.
Locally declared names and counter names may coincide with global ones; the local
declarations have precedence. This is so, in order to make possible a normal
extension of the global declarations.

4 Assignment of variables may only occur in the EQUATIONS section; only
LOC and A_S variables may be assigned. Assignment of parameters and model
parameters may only occur in the PARAMETER_PROCESSING section.

5 Any variable, parameter, or model parameter may only be assigned once.
LOC variables and parameters must be assigned before they are referenced. A_S
variables must be referenced before they are assigned.

6 The EQUATIONS section may contain references to variables, parameters,
and model parameters. The PARAMETER_PROCESSING section may contain
references to parameters and model parameters. Assignment of model parameters
may only depend on other model parameters.

7 The number of OUT variables must agree with the number of equations.

8 All IN variables must appear in link declarations.

9 No LOC or A_S variables may occur in links.

10 All THRU variables but no CROSS variables should have direction
specified by POS_IN or POS_OUT. GENERIC variables are always CROSS.

11 The PARAMETER_PROCESSING section cannot contain equations.
Statements in the EQUATIONS section may consist of equations and assignments,
but equations may not appear enclosed by IF - END_IF.

12 Counters are not declared separately. The same counter name may be used
repeatedly.

37

13 Functions called in procedure calls must have type 'VOID'. Function
expressions used in arithmetic expressions (section 2.4) must have type 'INT' or
'FLOAT', those used in Boolean factors (section 2.4.2) must have type 'BOOLEAN'.

14 Indexed variables are allowed in links, only when variable and link are
vectors and indices are synchronized.

15 In function declarations, <external_name> must be the name of a procedure
or function defined in the language specified.

16 A function body cannot contain equations.

17 Only IN and OUT variables may be used with derivatives.

18 All formal parameters must be declared as INPUT or OUTPUT or both.

19 Variables and parameters, which are declared as arrays (vectors or
matrices), should be used with (the right number of) indices, except when they are
used as arguments in function calls and the corresponding parameter is an array
name. In this case, they should appear without indices and the corresponding
parameter should be declared with the same size.

20 Formal parameters used as field sizes for formal arrays must be of type
'INT'.

21 A THRU variable in a model can appear in at most two links, one with
POS_IN direction and one with POS_OUT direction.

22 The string of a description may not exceed 80 characters, each whitespace
is counted as one character.

23 When an NMF function body is represented by an EXTERNAL call, the
following applies:

- The name of the external routine may coincide with the name of any NMF-
defined quantity. It may e.g. agree with the name of the calling NMF
function.

- The type of the external routine is assumed to agree with the type of the
NMF function. The types of parameters in the external call are assumed to
agree with the corresponding (formal) parameters of the external routine.
(No checking of these agreements will normally be possible when the NMF
function is translated.)

- The parameters used in the external call must all appear among the formal
parameters of the NMF function, but may appear in a different order. Each
formal parameter may occur an arbitrary number of times, including zero,
among the parameters of the external call. (As a corollary, we note that if
constants or expressions are desired as parameters in the external call, the
body must be reformulated as an NMF statement, calling a second NMF
function.)

38

24 A non-integer value is rounded when it is assigned to a model parameter, or
used as an index or an integer input argument of a function.

39

8. APPENDIX 2 EXAMPLES OF MODEL DEFINITIONS

The model examples shown in these Appendices have recently been translated via
the ASHRAE translator and used in test runs with the IDA environment. Some
caveats are in order, though:

- The validity ranges included in the NMF descriptions have not been tested
properly.

- In some of the control components, variables have "natural" limits like the
interval [0,1], etc. The event handling however, at least as it is implemented in
IDA Solver, must be able to pass the event limit in order to detect it. It is still an
open question how this conflict should be resolved.

CONTENTS

Global NMF Types 40
Example 1 Thermal Mass 42
Example 2 Homogeneous Wall 43
Example 3 Relay (Thermostat) 45
Example 4 Backlash (Actuator w hysteresis) 46
Example 5 Mean radiant zone 49
Example 6 Function U_film 51
Example 7 Zone with Bidirectional Air Paths 53
Example 8 Bidirectional Leak 54

40

Global NMF Types

QUANTITY_TYPES

/* Quantity types are used for both variables and parameters. For
 parameters the kind is irrelevant. */

/* CROSS = Potential, non-directional */
/* THRU = Flow, directional */

/* GENERAL and THERMODYNAMICS */
/* type name unit kind */
 Angle "Deg" CROSS
 Area "m2" CROSS
 Control "dimless" CROSS
 Density "kg/m3" CROSS
 Enthalpy "J/kg" CROSS
 Factor "dimless" CROSS
 FractFlow_h "mg/h" THRU
 Fraction "kg/kg" CROSS /* pollutant/total mass */
 Fraction_y "mg/kg" CROSS
 HeatCap "J/K" CROSS
 HeatCapA "J/(K m2)" CROSS
 HeatCapM "J/(kg K)" CROSS
 HeatCond "W/K" THRU
 HeatCondL "W/(m K)" THRU
 HeatCondA "W/(m2 K)" THRU
 HeatFlux "W" THRU
 HeatFlux_k "kW" THRU
 HeatFlux_M "MW" THRU
 HeatRes "K/W" CROSS
 HeatResA "(m2 K)/W" CROSS
 HumRatio "kg/kg" CROSS /* water/dry air */
 HumRatio_m "g/kg" CROSS
 Length "m" CROSS
 Mass "kg" CROSS
 MassFlow "kg/s" THRU
 MassFlow_h "kg/h" THRU
 MassFlow_y "mg/s" THRU
 OnOff "dimless" THRU
 Pressure "Pa" CROSS
 Pressure_k "kPa" CROSS
 Radiation "W" THRU
 RadiationA "W/m2" THRU
 Temp "Deg-C" CROSS
 Temp_F "Deg-F" CROSS
 Temp_K "K" CROSS
 Time "s" CROSS
 Velocity "m/s" THRU
 ViscDyn "kg/(m s)" THRU
 ViscKin "m2/s" THRU
 Volume "m3" CROSS
 VolFlow "m3/s" THRU
 VolFlow_h "m3/h" THRU

/* OTHER APPLICATION FIELDS */
/* type name unit kind */
 Current "A" THRU
 ElCap "F" CROSS
 ElInduct "H" CROSS
 ElRes "Ohm" CROSS
 Power "W" THRU
 Voltage "V" CROSS

LINK_TYPES

41

/* type name variable types... */

 Q (HeatFlux)
 T (Temp)
 Z (Factor)
 X_y (Fraction_y)
 X_h (FractFlow_h)
 HQ (Enthalpy, HeatFlux)
 TQ (Temp, HeatFlux)
 TQRR (Temp, HeatFlux, Radiation, Radiation)
 TR (Temp, RadiationA)
 RRRR (RadiationA, RadiationA, RadiationA, RadiationA)

 M (MassFlow)
 MT (MassFlow, Temp)

 PM (Pressure, MassFlow)
 PMT (Pressure, MassFlow, Temp)
 PMTQ (Pressure, MassFlow, Temp, HeatFlux)

 MoistAir (Pressure, MassFlow, Temp, HumRatio)
 VentX (Pressure, MassFlow_h, Temp, Fraction_y)
 BidirFlow (Pressure, MassFlow, Enthalpy, HeatFlux)
 BidirX (Pressure, MassFlow_h, Temp, HeatFlux,
 Fraction_y, FractFlow_h)
 HeatSun (Temp, HeatFlux, RadiationA, RadiationA)

 ControlLink (Control)
 ControlLimit (Control, Control)

 UI (Voltage, Current)

CONSTANTS

/* name value unit comment */

 ABS_ZERO -273.16 "Deg-C" /* absolute zero temp */
 BOLTZ 5.67E-8 "W/(m2 K4)" /* Stefan Boltzmann */
 CP_AIR 1006. "J/(kg K)" /* air specific heat */
 CP_VAP 1805. "J/(kg K)" /* watervapor specific heat */
 CP_WAT 4187. "J/(kg K)" /* water specific heat */
 CV_AIR 720. "J/(kg K)" /* air specific heat */
 G 9.81 "m/s2" /* gravity acceleration */
 GASCON 287. "" /* general gas constant */
 HF_VAP 2.501E6 "J/kg" /* water vaporization heat */
 LAMBDA_AIR 0.0243 "W/(m K)" /* air thermal conductivity */
 LAMBDA_WAT 0.554 "W/(m K)" /* water thermal
 conductivity */
 P_ATM_0 1.013E5 "Pa" /* standard air pressure */
 PI 3.1415927 "dimless" /* the pi number */
 PRANDTL_AIR 0.71 "dimless" /* air Prandtl number */
 RHO_AIR 1.2 "kg/m3" /* air density */
 RHO_WAT 1000. "kg/m3" /* water density */
 VISC_WAT 1.E-3 "kg/(m s)" /* water dynamic viscosity */

42

Example 1

CONTINUOUS_MODEL Tq_thermal_mass

ABSTRACT "Thermal mass with variable number of conduction links
 and variable number of heat sources controlled from outside"

EQUATIONS

/* heat balance */
 v_rho_cp * T' = SUM j = 1,n_cond Q[j] END_SUM
 + SUM i = 1, n_src Gamma[i] * q_src[i] END_SUM
 GOOD_INVERSES (T) ;

LINKS

/* type name variables... */

 FOR j = 1,n_cond
 TQ Cond[j] T, POS_IN Q[j]
 END_FOR ;

 FOR i = 1,n_src
 ControlLink Src_ctrl[i] Gamma[i]
 END_FOR ;

VARIABLES

/* type name role def min max description */
 temp T OUT 0. abs_zero BIG "mass temperature"
 HeatFlux Q[n_cond] IN 0. -BIG BIG "conducted heat"
 Control Gamma[n_src] IN 0 0 1 "source control (0,1)"

MODEL_PARAMETERS

/* type name role def min max description */
 INT n_cond SMP 1 0 BIGINT "no of conduction links"
 INT n_src SMP 1 0 BIGINT "no of controllable
 sources"

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
 Volume v S_P 1. SMALL BIG "Volume"
 Density rho S_P 1. SMALL BIG "Density"
 HeatCapM cp S_P 1. SMALL BIG "Heat capacitivity (J/kg K)"
 HeatFlux q_src[n_src] S_P 1. SMALL BIG "Heat source intensity"

/* derived parameters */
 HeatCap v_rho_cp C_P 1. SMALL BIG "Thermal mass"

PARAMETER_PROCESSING

 v_rho_cp := v * rho * cp ;

END_MODEL

43

Example 2

CONTINUOUS_MODEL tq_hom_wall

ABSTRACT
 "A 1D finite difference wall model.
 One homogeneous layer.
 TQ interfaces on both sides."

EQUATIONS

/* space discretized heat equation */

 c_coeff * T'[1] = Taa - 2.*T[1] + T[2] ;
 c_coeff * T'[n] = T[n - 1] - 2. * T[n] + Tbb ;

 FOR i = 2, (n-1)
 c_coeff * T'[i] = T[i - 1] - 2. * T[i] + T[i + 1];
 END_FOR ;

/* boundary equations */

 0 = -Ta + .5 * (Taa + T[1]) ;
 0 = -Tb + .5 * (T[n] + Tbb) ;
 0 = -Qa + d_coeff * (Taa - T[1]) ;
 0 = -Qb + d_coeff * (Tbb - T[n]) ;

LINKS

/* type name variables */

 TQ a_side Ta, POS_IN Qa ;
 TQ b_side Tb, POS_IN Qb ;

VARIABLES

/* type name role def min max description*/

 Temp T[n] OUT 0. abs_zero BIG "temperature profile"
 Temp Ta OUT 0. abs_zero BIG "a-side surface temp"
 Temp Tb OUT 0. abs_zero BIG "b-side surface temp"
 Temp Taa OUT 0. abs_zero BIG "a-side virtual temp"
 Temp Tbb OUT 0. abs_zero BIG "b-side virtual temp"
 HeatFlux Qa IN 0. -BIG BIG "a-side entering heat"
 HeatFlux Qb IN 0. -BIG BIG "b-side entering heat"

MODEL_PARAMETERS

/* type name role def min max description */
 INT n SMP 3 3 BIGINT "no of temp layers"

44

 PARAMETERS

/* type name role def min max description */

/* easy access parameters */
 Area a S_P 10. SMALL BIG "wall area"
 Length thick S_P .25 SMALL BIG "wall total thickness"
 HeatCondL lambda S_P 0.5 SMALL BIG "heat transfer coeff"
 Density rho S_P 2000. SMALL BIG "wall density"
 HeatCapM cp S_P 900. SMALL BIG "wall heat capacity"
/* derived parameters */
 generic d_coeff C_P "lambda*a/dx"
 Length dx C_P "layer thickness"
 generic c_coeff C_P "rho*cp*dx*dx/lambda"

PARAMETER_PROCESSING

 dx := thick / n ;
 c_coeff := rho * cp * dx * dx / lambda;
 d_coeff := lambda * a / dx ;

END_MODEL

45

Example 3

CONTINUOUS_MODEL Thermostat

ABSTRACT "Thermostat w dead band tmin-tmax,
 OFF=0, ON=1 at low temperature"

EQUATIONS

 Out_signal = Old_signal
 BAD_INVERSES () ;

 Top := eventp(Hi, T - tmax) ;
 Bottom := eventn(Lo, T - tmin) ;
 Old_signal := IF Top > 0 THEN
 0
 ELSE_IF Bottom < 0 THEN
 1
 ELSE
 Old_signal
 END_IF ;

LINKS

/* type name variables */

 ControlLink Out_sign Out_signal ;
 ControlLink In_sign T ;

VARIABLES

/* type name role def min max description */

 generic Hi A_S "Event var up"
 generic Lo A_S "Event var down"
 generic Old_signal A_S "State On or Off"
 generic T IN "In-signal"
 generic Out_signal OUT 0 0 1 "Out-signal On=1 or Off=0"
 generic Top LOC "Over the top"
 generic Bottom LOC "Down under"

PARAMETERS

/* type name role def min max description */

 temp tmin S_P "lower limit of dead band "
 temp tmax S_P "higher limit of dead band"

END_MODEL

46

Example 4

CONTINUOUS_MODEL Hysteresis

ABSTRACT "Hysteresis, output varying continuously between 0 and 1,
 sloping sides; limiting romboid:
 upper left (1-a-b,1) upper right (1-a,1)
 lower left (a,0) lower right (a+b,0)."

/*
 y ^ (,1) (cc,1)
 | +-------+--
 | / /
 | / /
 | / /
 | / /
 | / /
 |--+-------+------> u
 (ac,0) (bc,0)

 ac = a, bc = a+b, cc = 1-a
*/

EQUATIONS

 Y = IF U > U_old THEN
 IF S_right < 0 THEN
 Y_old
 ELSE_IF S_top < 0 THEN
 (U-bc) * slope
 ELSE
 1
 END_IF
 ELSE
 IF S_left > 0 THEN
 Y_old
 ELSE_IF S_bottom > 0 THEN
 (U - ac) * slope
 ELSE
 0
 END_IF
 END_IF
 BAD_INVERSES (U) ;

 U_set = IF U > cc THEN
 cc
 ELSE_IF U < ac THEN
 ac
 ELSE
 U
 END_IF
 BAD_INVERSES (U) ;

/* update assigned states */

 IF U > U_old THEN

 IF event (S_right, U - bc - Y_old/slope) < 0 THEN

/* prepare for next regime */
 S_top := U - cc
 ELSE
 Loc := event (S_top, U - cc)
 END_IF ;

47

/* prepare for change of direction */
 S_left := U - ac - Y_old/slope ;
 S_bottom := U - ac ;

 ELSE
 IF event (S_left, U - ac - Y_old/slope) > 0 THEN

/* prepare for next regime */
 S_bottom := U - ac
 ELSE
 Loc := event (S_bottom, U - ac)
 END_IF ;

/* prepare for change of direction */
 S_right := U - bc - Y_old/slope ;
 S_top := U - cc ;
 END_IF ;

 IF U > bc + Y_old/slope
 OR U < ac + Y_old/slope THEN
 Y_old := Y
 END_IF ;

 U_old := U ;

LINKS

/* type name variables */

 ControlLimit In_signal U, U_set ;
 ControlLink Out_signal Y ;

VARIABLES

/* type name role def min max description */

 generic S_bottom A_S "Event var left side to bottom"
 generic S_left A_S "Event var reaching left side"
 generic S_right A_S "Event var reaching right side"
 generic S_top A_S "Event var right side to top"
 generic U IN "In-signal"
 generic U_old A_S "Old in-signal saved"
 control U_set OUT "Limited in-signal, fed back"
 control Y OUT "Out-signal"
 generic Y_old A_S "Old out-signal saved"
 generic Loc LOC "Dummy"

48

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
 control a S_P 0 0 0.5 "lower left corner = (a,0)"
 control b S_P 0.5 0 1 "dead band = width of romboid"

/* derived parameters */
 control ac C_P 0 0 1 "lower left corner = (ac,0)"
 control bc C_P 0.5 0 1 "lower right corner = (bc,0)"
 control cc C_P 0.5 0 1 "upper right corner = (cc,1)"
 control ramp C_P 0.5 0 1 "width of sides"
 control slope C_P 2 1 BIG "slope of sides"

PARAMETER_PROCESSING

 ac := a ;
 cc := 1. - a ;
 ramp := 1. - 2*a - b ;

 IF ramp > 1E-4 THEN
 bc := a + b ;
 ELSE
 ramp := 1E-4 ;
 bc := 1 - a - ramp ;
 IF bc < ac THEN
 CALL nmf_error ("Wrong parameters in hysteresis (1-2*a-b<0)")
 END_IF ;
 END_IF ;

 slope := 1. / ramp ;

END_MODEL

49

Example 5

CONTINUOUS_MODEL M_rad_zon

ABSTRACT
 " A zone model with a variable number of surfaces.

 Longwave radiation is treated with Stefan-Boltzmann
 law between surface and mean radiant temperature.

 Nonlinear convective heat transfer between surface and air.

 Only one source of shortwave radiation (window).

 Ventilation and infiltration are supposed to be modelled
 in a separate component, connected by a TQ link."

EQUATIONS

/* calc film coefficients */
 FOR i = 1, n_surf
 U_f[i] :=
 IF LINEARIZE(1) THEN
 1.
 ELSE
 U_film (T_zone, T_surf[i], surf_slope[i], T_dif[i])
 END_IF
 END_FOR ;

/* heat from people */
 Q_person := IF T_zone < 20. THEN q_activity
 ELSE_IF T_zone > 40. THEN 0
 ELSE q_activity * (40. - T_zone) / 20.
 END_IF ;
 Q_active := N_people * Q_person ;

/* air heat balance */
 0 = Q_vent + Q_active + Q_zone +
 SUM j = 1, n_surf
 surf_area[j] * U_f[j] * (T_surf[j] - T_zone)
 END_SUM
 BAD_INVERSES () ;

/* long wave radiation balance */
 0 = SUM i = 1, n_surf
 surf_area[i] * ((T_surf[i]-ABS_ZERO)**4
 -(M_rad_t-ABS_ZERO)**4)
 END_SUM
 BAD_INVERSES () ;

/* surface heat balances */
 FOR i = 1, n_surf
 0 = Q_surf[i]
 + surf_area[i] * U_f[i] * (T_zone - T_surf[i])
 + q_frac[i] * Q_source
 + 0.93 * BOLTZ * surf_area[i]
 * ((M_rad_t-ABS_ZERO)**4 - (T_surf[i]-ABS_ZERO)**4)
 BAD_INVERSES (Q_source) ;
 END_FOR ;

50

LINKS

/* type name variables */

 TQ zone_air T_zone, POS_IN Q_vent ;
 Q sw_source POS_IN Q_source ;
 Q direct POS_IN Q_zone ;
 Z occupancy N_people ;

 FOR i = 1, n_surf
 TQ surface[i] T_surf[i], POS_IN Q_surf[i]
 END_FOR ;

VARIABLES

/* type name role def min max description*/

Temp T_zone OUT 0. abs_zero BIG "zone temperature"
HeatFlux Q_vent IN 0. -BIG BIG "net heat flow to air
 (from separate model)"
Factor N_people IN 0. 0. BIG "number of people"
HeatFlux Q_zone IN 0. -BIG BIG "heat direct to air"
Temp M_rad_t OUT 0. abs_zero BIG "mean radiant temp"
Temp T_surf[n_surf] IN 0. abs_zero BIG "surface temperature"
HeatFlux Q_surf[n_surf] OUT 0. -BIG BIG "surface heat flow"
HeatFlux Q_source IN 0. -BIG BIG "short wave

 radiation"
HeatFlux Q_active LOC "heat flow fr people"
HeatFlux Q_person LOC "heat flow / person"
Temp T_dif[n_surf] LOC "saved temp diff"
HeatCondA U_f[n_surf] LOC "film coeff"

MODEL_PARAMETERS

/* type name role def min max description*/

 INT n_surf SMP 6 1 BIGINT "number of surfaces"

PARAMETERS

/* type name role def min max description*/

Heatflux q_activity S_P 0. 0. BIG "activity / person"

/* easy access parameters for rectangular surfaces */
Length surf_height[n_surf] S_P 2.4 0. BIG "surface height"
Length surf_width[n_surf] S_P 3. 0. BIG "surface width"
Angle surf_slope[n_surf] S_P 0. 0. 180. "surface slope,
 0=floor,
 180=ceiling"
Factor q_frac[n_surf] S_P .1 0. BIG "surface shortw share"

/* derived parameters */
Area surf_area[n_surf] C_P 1. 0. BIG "surface area"

PARAMETER_PROCESSING

 FOR i = 1, n_surf
 surf_area[i] := surf_height[i] * surf_width[i]
 END_FOR ;

END_MODEL

51

Example 6

FUNCTION FLOAT U_film (TAir, TSurf, SurfSlope)

/* Calculate film coefficient for room surfaces */

LANGUAGE F77

INPUT
 FLOAT TAir, TSurf, SurfSlope;

CODE
 REAL FUNCTION U_FILM (TAir, TSurf, SurfSlope)

 REAL TAir, TSurf, SurfSlope

* Calculate surface film coefficient U_FILM as a function
* of temperature difference (TAir - TSurf) and surface slope
* given as SurfSlope=0 for floor and SurfSlope=180 for ceiling.

 REAL ALFA_HOR(2, 8), ALFA_VERT(2, 8)
 COMMON /ALFA_TAB/ ALFA_HOR, ALFA_VERT

 INTEGER I2
 REAL ABS_DIF, ALFA, DIF, GRAD
 EXTERNAL TABLE

 I2 = 2
 DIF = TAir - TSurf
 IF (SurfSlope .LT. 89.) THEN
* Floor
 CALL TABLE (8, ALFA_HOR, I2, -DIF, ALFA, GRAD)

 ELSE IF (SurfSlope .GT. 91.) THEN
* Ceiling
 CALL TABLE (8, ALFA_HOR, I2, DIF, ALFA, GRAD)

 ELSE
* Wall
 ABS_DIF = ABS (DIF)
 CALL TABLE (8, ALFA_VERT, I2, ABS_DIF, ALFA, GRAD)

 ENDIF

 U_FILM = ALFA
 RETURN
 END

* For completeness the subroutine TABLE follows even though it may
* well be stored somewhere else, e.g. in a fortran library etc.

SUBROUTINE TABLE (NCOL, TableVal, TABLREF, ARG, VAL, SLOPE)

 INTEGER NCOL, TABLREF
 REAL TableVal(2, NCOL), ARG, VAL, SLOPE

* INTERPOLATE LINEARLY IN TABLE 'TableVal',
* FIND VALUES 'VAL' & 'SLOPE' CORRESPONDING TO ARGUMENT 'ARG'.
* 'TABLREF' POINTS INTO TABLE AND IS ADJUSTED,
* UP OR DOWN, UNTIL A SUITABLE INTERVAL IS FOUND.
* IT IS ASSUMED THAT OUTMOST SEGMENTS STRETCH TO +- INFINITY.

 REAL T1,T2,V1,V2

52

 T1 = TableVal(1, TABLREF)

 IF (ARG .LT. T1) THEN
 20 CONTINUE
 IF (TABLREF .GT. 1) THEN
 TABLREF = TABLREF - 1
 T2 = TableVal(1, TABLREF)
 IF (ARG .LT. T2) THEN
 T1 = T2
 GOTO 20
 ENDIF
 ENDIF
 V1 = TableVal(2, TABLREF+1)
 ELSE
 40 IF (TABLREF .LT. NCOL) THEN
 TABLREF = TABLREF + 1
 T2 = TableVal(1, TABLREF)
 IF (ARG .GT. T2) THEN
 T1 = T2
 GOTO 40
 ENDIF
 ENDIF
 V1 = TableVal(2, TABLREF-1)
 ENDIF
 V2 = TableVal(2, TABLREF)
 SLOPE = (V2 - V1) / (T2 - T1)
 VAL = (ARG - T1) * SLOPE + V1

 RETURN
 END
END_CODE

END_FUNCTION

53

Example 7

CONTINUOUS_MODEL Bdzone

ABSTRACT
 "A static zone model for air-exchange modelling. Bidirectional
 transports of energy plus a mass fraction are modelled."

EQUATIONS

/* mass conservation */
 0 = M_0 + SUM i=1, n M[i] END_SUM
 BAD_INVERSES () ;

/* energy conservation */
 0 = Q_zone + Q_0 + SUM i2=1, n Q[i2] END_SUM
 BAD_INVERSES () ;

/* fraction conservation */
 0 = xf_source + Xf_0 + SUM i3=1, n Xf[i3] END_SUM
 BAD_INVERSES () ;

LINKS

/* type name variables... */

BidirX terminal_0 P, POS_IN M_0, T, POS_IN Q_0, X, POS_IN Xf_0;

FOR i = 1, n
 BidirX terminal[i] P, POS_IN M[i], T, POS_IN Q[i], X, POS_IN Xf[i]
END_FOR ;

TQ air_temp T, POS_IN Q_zone;

VARIABLES

/* type name role def min max description */
 MassFlow_h M_0 OUT "terminal 0 massflow"
 MassFlow_h M[n] IN "terminal i massflow"
 Pressure P IN "zone floor level press"
 HeatFlux Q_0 OUT "terminal 0 HeatFlux"
 HeatFlux Q[n] IN "terminal i HeatFlux"
 Temp T IN "zone temperature"
 FractFlow_h Xf_0 OUT "terminal 0 transport"
 FractFlow_h Xf[n] IN "terminal i transport"
 Fraction_y X IN "zone fraction"
 HeatFlux Q_zone IN "heat gain/loss in zone"

MODEL_PARAMETERS

/* type name role def min max description */
 INT n SMP 1 1 BIGINT "Number of links minus one"

PARAMETERS

/* type name role def min max description */
 Length za S_P "zone floor height

 from ground"
 Length h S_P 2.4 SMALL BIG "zone height"
 Area a S_P 10 SMALL BIG "zone floor area"
 FractFlow_h xf_source S_P 0 -BIG BIG "Mass fract source (or sink)"

END_MODEL

54

Example 8

CONTINUOUS_MODEL Bdleak

ABSTRACT "A powerlaw leak model w/ bidirectional transports of
 energy and a mass fraction."

EQUATIONS

/* driving pressure difference*/

 Rho1 := rho_20*(293/(T1 + 273)) ;
 Rho2 := rho_20*(293/(T2 + 273)) ;

 Dp := P1 - Rho1*G*zr1 - (P2 - Rho2*G*zr2) - Rho*G*dz ;

/* powerlaw massflow equation */

 M / 3600 = IF LINEARIZE (1) THEN c * Dp
 ELSE_IF abs (Dp) < dp0 THEN c0 * Dp
 ELSE_IF Dp > 0 THEN c * Dp**n
 ELSE -c * (-Dp)**n
 END_IF
 BAD_INVERSES () ;

/* convected heat through leak*/

 Q = IF LINEARIZE (1) THEN (T1 - T2) / 2
 ELSE_IF M > 0.0 THEN cp * T1 * M/3600
 ELSE cp * T2 * M/3600
 END_IF
 GOOD_INVERSES (Q) ;

/* fraction transported through leak*/

 Xf = IF LINEARIZE (1) THEN (X1 - X2) / 2
 ELSE_IF M > 0.0 THEN X1 * M/3600
 ELSE X2 * M/3600
 END_IF
 GOOD_INVERSES (Xf) ;

/* density of crack air is an assigned state (due to hysteresis) */

 Rho := IF LINEARIZE (1) THEN rho_20
 ELSE rho_20*(293/(IF EVENT(Mm, M) > 0 THEN T1
 ELSE T2
 END_IF + 273))
 END_IF ;

LINKS

/* type name variables... */

BidirX terminal_1 P1, POS_IN M, T1, POS_IN Q, X1, POS_IN Xf ;
BidirX terminal_2 P2, POS_OUT M, T2, POS_OUT Q, X2, POS_OUT Xf ;

VARIABLES

/* type name role def min max description */

Density Rho A_S 1.2 .5 3 "density of leak air"
Density Rho1 LOC 1.2 .5 3 "density of neighb.1 air"
Density Rho2 LOC 1.2 .5 3 "density of neighb.2 air"
MassFlow_h M OUT 0 -BIG BIG "massflow through leak"
Pressure P1 IN 1 -BIG BIG "terminal 1 pressure"

55

Pressure P2 IN 2 -BIG BIG "terminal 2 pressure"
Temp T1 IN 20 ABS_ZERO BIG "Temperature of neighbor 1"
Temp T2 IN 20 ABS_ZERO BIG "Temperature of neighbor 2"
HeatFlux Q OUT 0 -BIG BIG "heat moved by massflow"
Fraction_y X1 IN .1 0 1 "fraction of neighbor 1"
Fraction_y X2 IN .1 0 1 "fraction of neighbor 2"
FractFlow_h Xf OUT 0 -BIG BIG "fraction moved by

 massflow"
MassFlow_h Mm A_S "massflow memory"
Pressure Dp LOC "effective pressure

 difference"

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
/* priority order: ela, c_t */

Generic c_t S_P 1 0 BIG "powerlaw coeff [kg/(s Pa**n)]"
Generic n S_P .5 .5 1.0 "powerlaw exponent [dimless]"
Area ela S_P 0 0 BIG "equivalent leakage area
 at Dp=4 Pa (C_d = 1)"
length dz S_P 0 "rise fr terminal_1 to 2

 (may be < 0)"
length zr1 S_P 0 0 BIG "leak height from floor of

 neighb. 1"
length za1 S_P "absolute floor level of

 neighb. 1"
length za2 S_P "absolute floor level of

 neighb. 2"
HeatCapM cp S_P 1006 .5E3 3E3 "air cp"
Pressure dp0 S_P .1 SMALL BIG "limit for linear flow"
Density rho_20 S_P 1.2 SMALL 1.3 "density at ground press"

/* derived parameters, c is derived if ela > 0*/
Generic c C_P "powerlaw coeff [kg/(s Pa**n)]"
Generic c0 C_P "linear coefficient"
length zr2 C_P "leak height fr floor of

 neighb 2"

PARAMETER_PROCESSING

 zr2 := za1 + zr1 + dz - za2 ;

 c := IF ela > SMALL THEN
 ela * SQRT(4 * 2 * rho_20)/4**n
 ELSE
 c_t
 END_IF ;

 c0 := c * dp0**(n-1) ;

END_MODEL

56

9. APPENDIX 3 CHANGES IN VERSION 3

3.1 Syntax changes

1 Parameter declarations (section 2.8) have the same format as variable
declarations (section 2.6). Parameters thus have a 'role', which can take values S_P

or C_P (Supplied vs. Computed parameters). Normal input parameters are given
the role S_P. Parameters that get their values defined by the parameter processing
are given the role C_P. The role information makes it possible to translate the
model without delving into functions called by the parameter processing.

2 Model parameters (section 2.7) also get the same basic format, but with
roles SMP and CMP (Supplied vs. Computed Model Parameters). The same
reasoning applies.

3 Variables, model parameters, and parameters all have the same syntax for
default values and min/max values: [def [min max]]. This means that you can give,
either none of the values, or just default, or all three values. It is recommended that
default values, when that is meaningful, are specified in such a manner that they
constitute a reasonable set of test data for the model. This should be taken to
mean: with parameters and IN variables set to default, the model should deliver
OUT variable values equal to their defaults.

4 Sections VARIABLE_TYPES and PARAMETER_TYPES in global declarations
(section 2.1) have been combined into one section QUANTITY_TYPES. The original
report required variable and parameter types to be different. This created a lot of
impractical duplication and naming problems, since many physical quantities will
often appear both as variables and parameters. The new types are used for both
variables and parameters.

5 Concerns function declarations (section 2.9).

5.1 Lists of formal INPUT and OUTPUT declarations may be void (the keyword is
omitted).

5.2 Function declarations are terminated by END_FUNCTION.

5.3 Function type 'BOOLEAN' has been added.

5.4 Actual parameters can be of type STRING.

5.5 Function 'body' may be given in the form of NMF assignments, or as a call of
an EXTERNAL routine, or (as before) as a complete routine in the specified
language.

5.6 A RETURN statement can be used in NMF code in a function body. For non-
VOID functions, the return statement defines the function value.

6 Some further semantic notes have been added (section 3, notes 13-24).

57

3.2 Revision of Global NMF Types

QUANTITY_TYPES

One of the syntax changes described in Appendix 3.1 was to replace the two
sections VARIABLE_TYPES and PARAMETER_TYPES by one section
QUANTITY_TYPES, valid for both variables and parameters.

In the previous version of the report, variable types and parameter types were
required to have different names. Practical experience from modelling with NMF
showed that this led to unnecessary duplication and naming problems. It is also a
fact that a quantity may well be changed from parameter to variable status, or vice-
versa, during the development of a model, without in essence changing quality.
There were thus good reasons to amalgamate the two sections.

The type lists in the previous version were the result of uncoordinated
contributions from several users and lacked consistency. Since the merging of the
two lists required major changes anyhow, there was not much point in trying to
keep any of the old typing. Instead, an effort was made to build the new list in a
systematic way, and suggest some suitable mechanisms for later extensions.

Names are first chosen for types defined with basic SI units. To save space,
inherent structure in these names is marked by use of case, rather than by inserted
separating underscores. Examples:

Length "m"
MassFlow "kg/s"
HeatCond "W/K"

New type names can be constructed by adding suffixes to those already defined.
One important case is when types differ only by scaling (kPa, MJ, etc). Here, the
underscores are used to increase legibility:

 Scale factors

_k 10E3 _m 10E-3
_M 10E6 _y 10E-6
_G 10E9 _n 10E-9
_T 10E12 _p 10E-12

Examples:

Enthalpy "J/kg" HeatFlux "W"
Enthalpy_k "kJ/kg" HeatFlux_M "MW"

Another case is when types can reasonably be derived from already defined types
by making them specific, per unit length, per unit area, etc.

HeatCond "W/K" HeatCap "J/K"
HeatCondL "W/(K)" HeatCapM "J/(kg K)"
HeatCondA "W/(m2 K)"

58

The current list of QUANTITY_TYPES is found in Appendix 2

LINK_TYPES

Link types can be given descriptive long names, e.g. MoistAir , BidirFlow , etc.
However, since combinations of derived units tend to proliferate, the list of
mnemonic names might soon become too long to be practical. To avoid this,
systematic link names can be built from 'code' letters. The letters are chosen to
indicate the constituent variables in proper order; the possible derived units can
also be shown. For the code letters the following abbreviations are used:

C Control T Temp_C
X Fraction V VolFlow
G Humidity Z Factor
H Enthalpy
K Temp K
M MassFlow
P Pressure I Current
R Radiation P Power
Q HeatFlux U Voltage
S Entropy

Preferred order:
- Corresponding potential/flow adjacent in that order (PM, HQ, etc);
- Main flow first, then transported qualities.

Links containing variables in derived units use an extension of the basic letter
combination to indicate scaling factors.

Examples:

TQ (Temp, HeatFlux)
TQ$_k (Temp, HeatFlux_k)
PMTX$k__y (Pressure_k, MassFlow, Temp, Fraction_y)

Proliferation of type names should be avoided as much as possible. It is desirable
that checking of link types be made at link level to retain the spirit of NMF, i.e. to
achieve compatibility via strict typing. For the same reason, alternative link types,
differing only in scaling (..$__), should not be introduced carelessly. Rather, for
each new combination of variable types, required on an interface, a careful choice
of the scaling factors should be made. Hopefully, this choice should be acceptable
for other model developers as well.

The current list of QUANTITY_TYPES is found in Appendix 2

59

10. APPENDIX 4 A WORKED SYSTEM EXAMPLE

In the following appendix is shown a small system, built from components
documented in this appendix. The system has been simulated with IDA, and some
result plots are presented.

Contents

Demand Controlled Ventilation - System and Results 59
Example 1 Actuator Ramp with Discrete Input 62
Example 2 Comparator with Two Dead Bands 63
Example 3 Zone with Dynamic Concentration of Contaminant 65
Example 4 Leak between Zone and Ambient 67
Example 5 Fan 69
Example 6 Exhaust Terminal in Zone 73
Example 7 Supply Terminal in Zone 75
Example 8 Mixing Box 77

Demand Controlled Ventilation - System and Results

The system consists of a zone with supply and exhaust ventilation plus return air
via a mixing box (figure 1).

Figure 1

LEAK ZONE

ACTUATORCOMPARATOR

MIXING BOX

The aim is to keep carbon dioxide concentration in the inhabited zone between 800
and 1000 ppm by controlling the amount of outside air through the mixing box.
The amount of exhaust air is somewhat higher than the supply, the balance comes
from infiltration. The CO2 load from people follows an office type of pattern.

60

The supply and exhaust ducts have been reduced to one single component each,
where the relevant pressure drops can be specified. The duct system, including fans
and mixing box, etc, model one-directional flow, with links sufficient for that
purpose. The leak paths require bidirectional flow modelling and use more
elaborate links. The interface between these two different model families is
supplied by zone terminals, with different plugs at either end.

The fan curves have been chosen quite steep in the pertinent area, so the net supply
and exhaust flows are quite insensitive to the operation of the mixing box.

The control equipment consists of a comparator plus an actuator. The comparator
checks for the two CO2 limits. As long as CO2 is between the limits the actuator is
left at rest. When CO2 goes out of bounds, the actuator is instructed to ramp up or
down at a constant pace. The ramping is terminated when CO2 again falls between
limits, or alternatively, when the actuator reaches one of its limits.

The mixing box moves three dampers in parallel, in the return path and in the two
paths leading outdoors. The signal from the actuator is interpreted as the desired
fraction of outdoor air to put into the supply duct. The damper 'position' is
assumed to translate to a linear variation in the flow characteristics of the dampers.

The models used are listed below, together with their parameter values, when these
are different from the default values in the NMF models.

ZONE LEAK
TYPE BdZonT TYPE UtLeak
 a = 1300 c_t = .071
 h = 2.6
 xfrate = 9.8
 COMPARATOR
 TYPE CoCom2
MIXING BOX maxhi = 1000
TYPE VxMix maxlo = 990
 coutmin = .01 minhi = 810
 coutmax = 2. minlo = 800
 cretmin = .01
 cretmax = 2. ACTUATOR
 TYPE CoRamp
 slope = 4.
EXHAUST
TYPE VxExhT
 c_t = 7.

EXHAUST FAN
TYPE VxFan
 dp_nom[1] = 1000. vf_nom[1] = 0
 dp_nom[2] = 500. vf_nom[2] = 19000
 dp_nom[3] = 0. vf_nom[3] = 21000

SUPPLY
TYPE VxSupT
 c_t = 7.

SUPPLY FAN
TYPE VxFan
 dp_nom[1] = 1000. vf_nom[1] = 0
 dp_nom[2] = 500. vf_nom[2] = 18387
 dp_nom[3] = 0. vf_nom[3] = 20322

61

The simulation performed shows the first 24 hours after a start with outdoor air
concentration in the zone (figures 2 and 3).

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

CO2 [g/kg]

ocuppants [100]

hours

co
nc

en
tr

at
io

n;
 n

o.
 o

f o
cc

up
an

ts
 in

 h
un

dr
ed

s

Figure 2

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

1

1.5

CO2 [g/kg]

actuator out

comparator out

hours

co
nc

en
tr

at
io

n

Figure 3

62

Example 1

CONTINUOUS_MODEL CoRamp

ABSTRACT "Actuator ramp with discrete input.
 While control input is 0, output remains the same.
 If control input is 1, output ramps up.
 If control input is -1, output ramps down.
 Output stays in the interval (lo,hi)."

EQUATIONS

/* RampOK allows movement when outsignal within limits;
 Insignal is one of -1, 0, 1 */
 Level' = slope*Insignal*RampOK
 GOOD_INVERSES (Level) ;

/* convert normalized output in (-1,1) to specific in (lo,hi) */
 OutLevel := lo * (1 - Level) / 2 + hi * (Level + 1) / 2 ;

/* Ensure that signal strictly in interval [-1,1] */
 OutSignal = IF OutLevel > hi THEN hi
 ELSE_IF OutLevel < lo THEN lo
 ELSE OutLevel
 END_IF
 GOOD_INVERSES (OutSignal) ;

 RampOK := IF event(Outside, Level * Insignal - 1) > 0 THEN
 0
 ELSE
 1
 END_IF;

LINKS
/* type name variables */

 controllink In_sig Insignal ;
 controllink Out_sig Outsignal ;

VARIABLES
/* type name role def min max description */

 control Outside A_S -0.5 ">0 if level outside (-1,1)"
 control RampOK A_S 0 0 1 "State =1 if ramping allowed,
 =0 otherwise"
 control Insignal IN 0 -1 1 "Input is -1, 0, or 1"
 control Level OUT 0.5 -1 1 "Normalized output in (-1,1)"
 control OutLevel LOC "Specific output in (lo,hi)"
 control Outsignal OUT "Ditto strictly in (lo,hi)"

PARAMETERS
/* type name role def min max description */

 generic slope S_P 1. -BIG BIG "change of output level
 / time_unit"
 generic lo S_P 0. -BIG BIG "lower limit of output"
 generic hi S_P 1. -BIG BIG "upper limit of output"

END_MODEL

63

Example 2

CONTINUOUS_MODEL CoCom2

ABSTRACT "Comparator w 2 dead bands minlo-minhi maxlo-maxhi,
 outsig -1, 0, 1 below, between, above min & max"

/*

 ^ Outsig
 |
 1+ ---------
minlo minhi	
 + - - - +---+------+---+ - - - ->
 | | | maxlo maxhi Insig
 | | |
 | | |
-1| ---------
 |
 |

*/

EQUATIONS

 Outsig = Oldsig
 BAD_INVERSES () ;

 UpMax := eventp(HiMax, Insig - maxhi) ;
 DownMax := eventn(LoMax, Insig - maxlo) ;

 UpMin := eventp(HiMin, Insig - minhi) ;
 DownMin := eventn(LoMin, Insig - minlo) ;

 Oldsig := IF UpMax > 0 THEN
 1
 ELSE_IF DownMax < 0 AND UpMin > 0 THEN
 0
 ELSE_IF DownMin < 0 THEN
 -1
 ELSE
 Oldsig
 END_IF ;

LINKS

/* type name variables */

 generic In_sig Insig ;
 ControlLink Out_sig Outsig ;

64

VARIABLES

/* type name role def min max description */

 generic HiMax A_S "Event var up"
 generic HiMin A_S "Event var down"
 generic LoMax A_S "Event var up"
 generic LoMin A_S "Event var down"
 generic Oldsig A_S 0 -1 1 "State -1, 0, 1"
 generic Insig IN "In-signal"
 generic Outsig OUT 0 -1 1 "Out-signal Lo=-1,
 Hi=1, Dead=0"
 generic DownMax LOC "Below max band"
 generic DownMin LOC "Below min band"
 generic UpMax LOC "Above max band"
 generic UpMin LOC "Above min band"

PARAMETERS

/* type name role def min max description */

 generic maxhi S_P 2 "hi limit of max dead band"
 generic maxlo S_P 1.9 "lo limit of max dead band"
 generic minhi S_P 1 "hi limit of min dead band"
 generic minlo S_P 0.9 "lo limit of min dead band"

PARAMETER_PROCESSING

/* Check that bands don't overlap */

 IF maxhi <= maxlo
 OR maxlo <= minhi
 OR minhi <= minlo THEN
 CALL nmf_error ("Parameters must be ordered

 minlo<minhi<maxlo<maxhi")
 END_IF

END_MODEL

65

Example 3

CONTINUOUS_MODEL bdzont

ABSTRACT
 "A dynamic zone model for air-exchange modelling. Bidirectional
 transports of energy plus a mass fraction are modelled.

 Alternative form of BDZONE used for demand controlled
 ventilation.

 Compared to BDZONE this model has two extra interfaces
 for control sensors."

EQUATIONS

/* fraction conservation */

 0 = - X'* xCap *1. / 3600
 + Occ * xfRate
 + Xf_source + Xf_0 + SUM i3=1, n Xf[i3] END_SUM
 GOOD_INVERSES (X) ;

/* mass conservation */

 0 = M_0 + SUM i=1, n M[i] END_SUM
 BAD_INVERSES () ;

/* energy conservation */

 0 = Q_zone + Q_0 + SUM i2=1, n Q[i2] END_SUM
 BAD_INVERSES () ;

LINKS

/* type name variables... */

 BidirX terminal_0 P, POS_IN M_0, T_zone, POS_IN Q_0,
 X, POS_IN Xf_0;

 FOR i = 1, n
 BidirX terminal[i] P, POS_IN M[i], T_zone, POS_IN Q[i],
 X, POS_IN Xf[i];
 END_FOR;

 Tq heat_load T_zone, POS_IN Q_zone;
 T air_temp T_zone;
 X_y fract X;
 Z people Occ;
 X_h source POS_IN Xf_source;

66

VARIABLES

/* type name role def min max description */

 Fraction_y X OUT "zone fraction"
 MassFlow_h M_0 OUT "terminal 0 massflow"
 MassFlow_h M[n] IN "terminal i massflow"
 Pressure P IN "zone floor level press"
 HeatFlux Q_0 OUT "terminal 0 HeatFlux"
 HeatFlux Q[n] IN "terminal i HeatFlux"
 Temp T_zone IN "zone temperature"
 FractFlow_h Xf_0 IN "terminal 0 transport"
 FractFlow_h Xf[n] IN "terminal i transport"
 HeatFlux Q_zone IN "heat gain/loss in zone"
 FractFlow_h Xf_source IN "Mass fraction source
 (or sink)"
 Factor Occ IN "No of occupants"

MODEL_PARAMETERS

/* type name role def min max description */
 INT n SMP 1 0 BIGINT "Number of links minus one"

PARAMETERS

/* type name role def min max description */
 Length za S_P 0 -BIG BIG "zone floor height

 relative to ground"
 Length h S_P 2.4 SMALL BIG "zone height"
 Area a S_P 10 SMALL BIG "zone floor area"
 FractFlow_h xfRate S_P 10 0 BIG "contaminant src/person"
 Density rho_20 S_P 1.2 SMALL 1.3 "density at ground press"
 mass xCap C_P "zone capacity of X [kg]"

PARAMETER_PROCESSING

 xCap := a * h * rho_20 ;

END_MODEL

67

Example 4

CONTINUOUS_MODEL utleak

ABSTRACT
 "A powerlaw leak model between zone and environment.
 Bidirectional transports of mass, energy and a mass fraction.
 A (building) Face parameter gives reference to specific set of
 global environment data. face=0 gives precedence to
 locally selected environment data."

EQUATIONS

/* driving pressure difference*/

Rho_in := rho_20*(293/(T_in + 273));
Rho_out := rho_20*(293/(T_out + 273));

Dp := P_in - Rho_in*G*zr_in - (P_out - Rho_out*G*zr_out)-Rho*G*dz;

/* powerlaw massflow equation */
 M / 3600 = IF LINEARIZE (1) THEN c * Dp
 ELSE_IF abs (Dp) < dp0 THEN c0 * Dp
 ELSE_IF Dp > 0 THEN c * Dp**n
 ELSE -c * (-Dp)**n
 END_IF
 BAD_INVERSES () ;

/* convected heat through leak */
 Q = IF LINEARIZE (1) THEN (T_in - T_out) / 2
 ELSE_IF M > 0.0 THEN cp * T_in * M/3600
 ELSE cp * T_out * M/3600
 END_IF
 GOOD_INVERSES (Q) ;

/* fraction transported through leak*/
 Xf = IF LINEARIZE (1) THEN (X_in - X_out) / 2
 ELSE_IF M > 0.0 THEN X_in * M/3600
 ELSE X_out * M/3600
 END_IF
 GOOD_INVERSES (Xf);

/* density of crack air is an assigned state (due to hysteresis) */
 Rho := IF LINEARIZE (1) THEN rho_20
 ELSE rho_20*(293/(IF EVENT(Mm, M) > 0 THEN T_in
 ELSE T_out
 END_IF + 273))
 END_IF ;

LINKS

/* type name variables... */

 BidirX inside P_in, POS_IN M, T_in, POS_IN Q, X_in,
 POS_IN Xf;

 BidirX outside P_out, POS_OUT M, T_out,POS_OUT Q,X_out,
 POS_OUT Xf;

68

VARIABLES

/* type name role def min max description */

Density Rho A_S 1.2 .5 3 "density of leak air"
Density Rho_in LOC 1.2 .5 3 "density of zone air"
Density Rho_out LOC 1.2 .5 3 "density of outside air"
MassFlow_h M OUT 0 -BIG BIG "massflow through leak"
Pressure P_in IN 1 -BIG BIG "inside floor pressure"
Pressure P_out IN 2 -BIG BIG "outside grnd pressure"
Temp T_in IN 20 ABS_ZERO BIG "inside temperature"
Temp T_out IN 20 ABS_ZERO BIG "outside temperature"
HeatFlux Q OUT 0 -BIG BIG "heat moved by massflow"
Fraction_y X_in IN .1 0 1 "zone fraction"
Fraction_y X_out IN .1 0 1 "environment fraction"
FractFlow_h Xf OUT 0 -BIG BIG "fraction moved"
MassFlow_h Mm A_S "massflow memory"
Pressure Dp LOC "effective press diff"

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
/* priority order: ela, c_t */

Generic c_t S_P 1 0 BIG "powerlaw coeff [kg/(s Pa**n)]"
Generic n S_P .5 .5 1.0 "powerlaw exponent [dimless]"
Area ela S_P 0 0 BIG "equivalent leakage area
 at Dp=4 Pa (C_d = 1)"
Factor face S_P 0 0 BIG "Building Face number,
 face=0 => local data is used"
length dz S_P 0 -BIG BIG "rise fr in to out (may be <0)"
length zr_in S_P 0 0 BIG "leak height from floor zone"
Length za_in S_P 0 -BIG BIG "absolute floor level of zone"
HeatCapM cp S_P 1006 .5E3 3E3 "air cp"
Pressure dp0 S_P .1 SMALL BIG "limit for linear flow"
Density rho_20 S_P 1.2 SMALL 1.3 "density at ground pressure"

/* derived parameters
c is derived if ela > 0 */

Generic c C_P "powerlaw coefficient
 [kg/(s Pa**n)]"
Generic c0 C_P "linear coefficient"
Length zr_out C_P "leak height from ground level"

PARAMETER_PROCESSING

 zr_out := za_in + zr_in + dz;

 c := IF ela > SMALL THEN
 ela * SQRT(4 * 2 * rho_20)/4**n
 ELSE
 c_t
 END_IF ;

 c0 := c * dp0**(n-1) ;

END_MODEL

69

Example 5

CONTINUOUS_MODEL VxFan

ABSTRACT "Fan with splined fan curve.
 Volume flow in fan curve is converted initially
 to mass flow."

EQUATIONS

/* calculate Dp as a spline function of mass flow M */
 CALL splint (mf_nom,dp_nom,y2,n,M,Dp_spl,Slope_spl) ;

 Dp := IF LINEARIZE (1) THEN
 dp_nom[1] + (M - mf_nom[1]) * slope
 ELSE Dp_spl
 END_IF ;

/* massflow equation */
 0 = -P2 + P1 + Dp
 BAD_INVERSES () ;

LINKS

/* type name variables... */

 VentX inlet P1, POS_IN M, T, X ;
 VentX outlet P2, POS_OUT M, T, X ;

VARIABLES

/* type name role def min max description */

 MassFlow_h M IN 1. -BIG BIG "massflow thru fan"
 Pressure P1 IN -10. SMALL BIG "terminal 1 press"
 Pressure P2 OUT 0 SMALL BIG "terminal 2 press"
 Temp T IN 15. ABS_ZERO BIG "temperature"
 Fraction_y X IN .1 0. BIG "pollutant fraction"
 Pressure Dp LOC "eff pressure diff"
 Pressure Dp_spl LOC "Dp_spl = spline(M)"
 Generic Slope_spl LOC "local slope of
 spline"

MODEL_PARAMETERS

/* type name role def min max description */
 INT n SMP 3 2 10 "nr of pts on fan curve"

70

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
/* fan curve */
 Pressure dp_nom[n] S_P 0. SMALL BIG "pressure rise, nominal"
 VolFlow_h vf_nom[n] S_P 0. SMALL BIG "volume flow"

/* derived parameters */
 Generic slope C_P "mean slope of fan curve"
 MassFlow_h mf_nom[n] C_P "mass flow for fan curve"
 Generic y2[n] C_P "2nd deriv for spline"

PARAMETER_PROCESSING

/* convert fan curve to mass flow */
 FOR i = 1, n
 mf_nom[i] := vf_nom[i] * RHO_AIR ;
 END_FOR ;

 slope := (dp_nom[n] - dp_nom[1]) / (mf_nom[n] - mf_nom[1]) ;

/* prepare spline curve */
 y2[1] := 0 ;
 CALL spline (mf_nom, dp_nom, n, 1E30, 1E30, y2) ;

FUNCTION VOID SPLINT(XA,YA,Y2A,N,X,Y,YPRIM)

/* Calculate Y(X) from spline*/

LANGUAGE F77

INPUT
INT N;
FLOAT XA[N],YA[N],Y2A[N],X,Y,YPRIM;

CODE
SUBROUTINE SPLINT(XA,YA,Y2A,N,X,Y,YPRIM)

INTEGER N

 REAL XA(N),YA(N),Y2A(N),X,Y,YPRIM

* Calculate Y(X) from spline XA,YA,Y2A
* XA(N),YA(N) = pivoting points,
* Y2A(N) = 2nd deriviatives in points.

INTEGER K,KLO,KHI
 REAL A,B,H

 KLO = 1
 KHI = N
1 IF (KHI-KLO.GT.1) THEN
 K = (KHI+KLO)/2
 IF (XA(K).GT.X)THEN
 KHI = K
 ELSE
 KLO = K
 ENDIF
 GOTO 1
 ENDIF

 H = XA(KHI) - XA(KLO)
 IF (H.LE.0.) THEN
 PRINT *, 'Arguments to SPLINE not ascending'

71

 STOP
 ENDIF

 A = (XA(KHI) - X) / H
 B = (X-XA(KLO)) / H
 Y = A*YA(KLO)+B*YA(KHI) +
 & ((A**3-A)*Y2A(KLO)+(B**3-B)*Y2A(KHI))*(H**2) / 6.
 YPRIM = (YA(KHI)-YA(KLO) +
 & (Y2A(KHI)*(3*B**2-1.) - Y2A(KLO)*(3*A**2-1.)) / 6.
 &) / H
 RETURN
 END
END_CODE

END_FUNCTION

FUNCTION VOID SPLINE(X,Y,N,YP1,YPN,Y2)

/* Prepare SPLINE parameters for SPLINT */

LANGUAGE F77

INPUT
INT N;
FLOAT X[N],Y[N],YP1,YPN,Y2[N];

CODE

 SUBROUTINE SPLINE(X,Y,N,YP1,YPN,Y2)
 INTEGER NMAX
 PARAMETER (NMAX = 100)
 INTEGER N
 REAL X(N),Y(N),YP1,YPN,Y2(N),U(NMAX)

* Prepare SPLINE parameters for SPLINT
* X(N),Y(N) = pivoting points,
* YP1,YPN = 1st deriviatives in end points,
* Y2(N) = calculated 2nd derivatives.

 INTEGER I,K
 REAL P,QN,SIG,UN

* Check increasing Xs
 DO 10 I = 1,N-1
 IF (X(I+1) - X(I) .LE. 0.) THEN
 PRINT *,'Arguments to SPLINT not ascending'
 STOP
 ENDIF
 10 CONTINUE

 IF (YP1 .GT. .99E30) THEN
 Y2(1) = 0.
 U(1) = 0.
 ELSE
 Y2(1) = -0.5
 U(1) = (3./(X(2)-X(1)))*((Y(2)-Y(1))/(X(2)-X(1))-YP1)
 ENDIF

 DO 11 I = 2,N-1
 SIG = (X(I)-X(I-1)) / (X(I+1)-X(I-1))
 P = SIG*Y2(I-1)+2.
 Y2(I) = (SIG-1.) / P
 U(I) = (6.*((Y(I+1)-Y(I))/(X(I+1)-X(I))-(Y(I)-Y(I-1))
 & / (X(I)-X(I-1)))/(X(I+1)-X(I-1))-SIG*U(I-1))/P

72

11 CONTINUE

 IF (YPN.GT..99E30) THEN
 QN = 0.
 UN = 0.
 ELSE
 QN = 0.5
 UN = (3./(X(N)-X(N-1)))*(YPN-(Y(N)-Y(N-1))/(X(N)-X(N-1)))
 ENDIF
 Y2(N) = (UN-QN*U(N-1)) / (QN*Y2(N-1)+1.)

 DO 12 K = N-1,1,-1
 Y2(K) = Y2(K)*Y2(K+1) + U(K)
12 CONTINUE

 RETURN
 END
END_CODE

END_FUNCTION

END_MODEL

73

Example 6

CONTINUOUS_MODEL VxExhT

ABSTRACT "Exhaust Terminal.
 Linear flow below limit 'dp0', and if LINEARIZE."

EQUATIONS

 Rho := rho_20 * (20. - ABS_ZERO) / (T - ABS_ZERO) ;
 Dp := P1 - P2 - zr1 * G * Rho ;

/* powerlaw massflow equation */
 0 = -M / 3600 + IF LINEARIZE (1) THEN c_turb * Dp
 ELSE_IF Dp < dp0 THEN c_lin * Dp
 ELSE c_turb * sqrt (Dp)
 END_IF
 BAD_INVERSES ();

/* convected heat through terminal */
 Q = IF LINEARIZE (1) THEN T
 ELSE cp * T * M / 3600
 END_IF
 GOOD_INVERSES (Q);

/* fraction transported through terminal */
 Xf = IF LINEARIZE (1) THEN X
 ELSE X * M / 3600
 END_IF
 GOOD_INVERSES (Xf);

LINKS

/* type name variables... */

 BidirX zone P1, POS_IN M, T, POS_IN Q, X, POS_IN Xf ;
 VentX outlet P2, POS_OUT M, T, X ;

VARIABLES

/* type name role def min max description */

 massflow_h M OUT 0. -BIG BIG "massflow through leak"
 Pressure P1 IN 2. SMALL BIG "terminal 1 pressure"
 Pressure P2 IN 1. SMALL BIG "terminal 2 pressure"
 temp T IN 15. ABS_ZERO BIG "temperature"
 HeatFlux Q OUT 0. -BIG BIG "heat convected by
 massflow"
 fraction_y X IN .1 0. BIG "pollutant fraction"
 FractFlow_h Xf OUT 0. -BIG BIG "pollution transport"
 Pressure Dp LOC "eff pressure diff"
 density Rho LOC "air density"

74

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
/* priority order: c_t, xi */

 generic c_t S_P 0 0 BIG "powerlaw coefficient"
 length d S_P .25 SMALL BIG "inner diameter"
 generic xi S_P 10. SMALL BIG "loss coeff"
 length zr1 S_P 0 0 BIG "leak height from floor"
 HeatCapM cp S_P 1006 500 3000 "air cp"
 Pressure dp0 S_P .1 SMALL BIG "limit for linear flow"
 Density rho_20 S_P 1.2 SMALL BIG "reference density"
/* derived parameters */
 area a C_P "cross section area"
 generic c_lin C_P "laminar coefficient"
 generic c_turb C_P "flow characteristic"

PARAMETER_PROCESSING

 a := PI * d * d / 4. ;

/* Check alternative definitions of c_turb */

 c_turb := IF c_t != 0. THEN
 c_t
 ELSE_IF xi == 0. THEN
 0.
 ELSE
 a * (2. * rho_20 / xi)**0.5
 END_IF ;

 IF c_turb == 0 THEN
 CALL nmf_error
 ("parameters missing (c_t or xi) for exhaust terminal ")
 END_IF ;

 c_lin := c_turb / sqrt (dp0) ;

END_MODEL

75

Example 7

CONTINUOUS_MODEL VxSupT

ABSTRACT "Supply Terminal.
 Linear flow below limit 'dp0', and if LIN."

EQUATIONS

 Rho := rho_20 * (20. - ABS_ZERO) / (T2 - ABS_ZERO) ;
 Dp := P1 - P2 + zr2 * G * Rho ;

/* powerlaw massflow equation */
 0 = -M / 3600 + IF LINEARIZE (1) THEN c_turb * Dp
 ELSE_IF Dp < dp0 THEN c_lin * Dp
 ELSE c_turb * sqrt (Dp)
 END_IF
 BAD_INVERSES ();

/* convected heat through terminal */
 Q = IF LINEARIZE (1) THEN T1
 ELSE cp * T1 * M / 3600
 END_IF
 GOOD_INVERSES (Q);

/* fraction transported through terminal */
 Xf = IF LINEARIZE (1) THEN X1
 ELSE X1 * M / 3600
 END_IF
 GOOD_INVERSES (Xf);

LINKS

/* type name variables... */

 VentX inlet P1, POS_IN M, T1, X1 ;
 BidirX zone P2, POS_OUT M, T2, POS_OUT Q,
 X2, POS_OUT Xf ;

VARIABLES

/* type name role def min max description */

 massflow_h M OUT 0. -BIG BIG "massflow through leak"
 Pressure P1 IN 2. SMALL BIG "pressure in"
 Pressure P2 IN 1. SMALL BIG "pressure out"
 temp T1 IN 15. ABS_ZERO BIG "temperature in"
 temp T2 IN 15. ABS_ZERO BIG "temperature zone"
 HeatFlux Q OUT 0. -BIG BIG "heat convected by
 massflow"
 fraction_y X1 IN .1 0. BIG "pollutant fraction in"
 fraction_y X2 IN .1 0. BIG "pollutant fraction
 zone"
 FractFlow_h Xf OUT 0. -BIG BIG "pollution transport"
 Pressure Dp LOC "eff pressure diff"
 density Rho LOC "air density"

76

PARAMETERS

/* type name role def min max description */
/* easy access parameters */
/* priority order: c_t, xi */

 generic c_t S_P 0 0 BIG "powerlaw coefficient"
 length d S_P .25 SMALL BIG "inner diameter"
 generic xi S_P 10. 0 BIG "loss coeff"
 length zr2 S_P 0 0 BIG "leak height from floor"
 HeatCapM cp S_P 1006 500 3000 "air cp"
 Pressure dp0 S_P .1 SMALL BIG "limit for linear flow"
 Density rho_20 S_P 1.2 SMALL BIG "reference density"

/* derived parameters */
 area a C_P "cross section area"
 generic c_lin C_P "laminar coefficient"
 generic c_turb C_P "flow characteristic"

PARAMETER_PROCESSING

 a := PI * d * d / 4. ;

/* Check alternative definitions of c_turb */

 c_turb := IF c_t != 0. THEN
 c_t
 ELSE_IF xi == 0. THEN
 0.
 ELSE
 a * (2. * rho_20 / xi)**0.5
 END_IF ;

 IF c_turb == 0 THEN
 CALL nmf_error
 ("parameters missing (c_t or xi) for supply terminal ")
 END_IF ;

 c_lin := c_turb / sqrt (dp0) ;

END_MODEL

77

Example 8

CONTINUOUS_MODEL VxMix

ABSTRACT "Mixing box. Three dampers move in parallel.
 Incoming control signal (0-1) defines required fraction
 of outside air.
 Resistances are linear functions of damper 'position'."

/*
 node exh node sup
 | | | | |
 | | | | ^ |
 | v | | | |
 | |______| |
 | / |
 | o |
 | / |
 | ______ |
 | | | | |
 | /| | /|
 | o | | o |
 |/ | |/ |
 | | | |
 | | | | ^ |
 | v | | | |
 | | | |
 node out node in
*/

EQUATIONS

/* pressure differences */
 DpOut := PExh - POut ;
 DpIn := PIn - PSup ;
 DpRet := PExh - PSup ;

/* flow characteristics as functions of position */
 COut = IF LINEARIZE (1) THEN
 (cOutMin + cOutMax) / 2
 ELSE
 cOutMin * (1 - Position) + cOutMax * Position
 END_IF
 GOOD_INVERSES(COut);

 CRet = IF LINEARIZE (1) THEN
 (cRetMin + cRetMax) / 2
 ELSE
 cRetMax * (1 - Position) + cRetMin * Position
 END_IF
 GOOD_INVERSES (CRet);

 COutLin := COut / sqrt (dp0) ;
 CRetLin := CRet / sqrt (dp0) ;

/* mass conservation */
 MRet := MExh - MOut ;

 0 = MExh + MIn - MSup - Mout
 BAD_INVERSES();

78

/* desired fresh air fraction */
 0 = - InSignal + IF LINEARIZE(1) THEN
 Position
 ELSE
 MIn / MSup
 END_IF
 GOOD_INVERSES (Insignal) ;

/* powerlaw massflow equations*/

 0 = - MOut / 3600 + IF LINEARIZE (1) THEN cOut * DpOut
 ELSE_IF DpOut < dp0 THEN cOutLin * DpOut
 ELSE COut * sqrt (DpOut)
 END_IF
 GOOD_INVERSES (MOut) ;

 0 = -MIn / 3600 + IF LINEARIZE (1) THEN cOut * DpIn
 ELSE_IF DpIn < dp0 THEN cOutLin * DpIn
 ELSE COut * sqrt (DpIn)
 END_IF
 GOOD_INVERSES (MIn);

 0 = -MRet / 3600 + IF LINEARIZE (1) THEN cRet * DpRet
 ELSE_IF DpRet < dp0 THEN cRetLin * DpRet
 ELSE CRet * sqrt (DpRet)
 END_IF
 GOOD_INVERSES (MRet);

/* temperature mix */
 0 = - TSup + IF LINEARIZE (1) THEN TIn
 ELSE TExh * (1. - InSignal) + TIn * InSignal
 END_IF
 GOOD_INVERSES(TSup);

/* fraction mix */
 0 = - XSup + IF LINEARIZE (1) THEN XIn
 ELSE XExh * (1. - InSignal) + XIn * InSignal
 END_IF
 GOOD_INVERSES(XSup);

LINKS

 /* type name variables... */

 VentX exhaust PExh, POS_IN MExh, TExh, XExh ;
 VentX supply PSup, POS_OUT MSup, TSup, XSup ;
 VentX outlet POut, POS_OUT MOut, TExh, XExh ;
 VentX intake PIn, POS_IN MIn, TIn, XIn ;

 ControlLink freshair InSignal ;

79

VARIABLES

/* type name role def min max description */

 control InSignal IN 1. 0. 1. "desired fresh air
 fraction"

 massflow_h MExh OUT 1. -BIG BIG "exhaust mass flow"
 massflow_h MSup OUT 1. -BIG BIG "supply mass flow"
 massflow_h MOut OUT 1. -BIG BIG "outlet mass flow"
 massflow_h MIn OUT 1. -BIG BIG "intake mass flow"
 massflow_h MRet LOC "return mass flow"

 pressure PExh IN 3. SMALL BIG "exhaust press"
 pressure PSup IN 0. SMALL BIG "supply pressure"
 pressure POut IN 2. SMALL BIG "outlet pressure"
 pressure PIn IN 1. SMALL BIG "intake pressure"

 temp TExh IN 15. ABS_ZERO BIG "exhaust temperature"
 temp TSup OUT 15. ABS_ZERO BIG "supply temperature"
 temp TIn IN 15. ABS_ZERO BIG "intake temperature"

 fraction_y XExh IN 1000. 0. BIG "exhaust fraction"
 fraction_y XSup OUT 1000. 0. BIG "supply fraction"
 fraction_y XIn IN 1000. 0. BIG "intake fraction"

 generic COut OUT "flow char in/out"
 generic CRet OUT "flow char return"

 pressure DpOut LOC "press diff out"
 pressure DpIn LOC "press diff in"
 pressure DpRet LOC "press diff return"

 factor Position OUT "damper position"
 generic cOutLin LOC "laminar coeff in/out"
 generic cRetLin LOC "laminar coeff return"

PARAMETERS

/* type name role def min max description */

/* easy access parameters */
 generic cOutMin S_P 0.5 0. BIG "flow coeff min in/out"
 generic cOutMax S_P 1. SMALL BIG "flow coeff max in/out"
 generic cRetMin S_P 0.5 0. BIG "flow coeff min return"
 generic cRetMax S_P 1. SMALL BIG "flow coeff max return"

 Pressure dp0 S_P .1 SMALL BIG "limit for linear flow"

END_MODEL

